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I  INTRODUCTION TR

This is the Final Report under Contract DAABO7-76-C-0368, entitled S S
"Executive Software". The objective of this investigation was to HT*’“
design' a real-time operating system: The resulting system we produced 1
is called Tactical Executive (TACEXEC). TACEXEC has been designed to SR
have the following properties:

(1) Capable of handling the dispatching of real-time tasks,

such as radar processing and weapons control.

(2) Adequate functional capability to support a wide range of
application subsystems, for instance message handling.

|

|

I (3) Efficiently implementable.

(4) Secure, in that separation of information according to a

model of pultilevel security is assured.

(5) Provable, in that formal reasoning it should be possible
to show that critical properties of the system are T
satisfied. For TACEXEC, the critical properties are AR R »
security and ensuring that tasks are dispatched according - - ~;;5<-:‘,\-1
to their real-time needs. S

(6) Portable, and capable of being implemented on any of a R
number of processors. Do T
Important principles have emerged from the work of Dijkstra [6],
Parnas [7], Hoare [8], and Floyd [9], the impact of which can be
summarized as follows:

(1) It is possible to structure both a software system and RS
the process of developing the system in such a way as to o L
significantly enhance the reliability of tne system.

(2) It is possible to write formal specifications for a RN
software system. SN T

(3) 1In the near future it should be possible to formally Co
prove the correctness of a system with respect to L4 L 4

® As will become clear later in the report, "design" is a collection of
specifications (perhaps augmented by drawings, text etc.) from which an
"implementation" (code that is directly executable on a processor) can
be realized that will behave according to the specification.

1
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'1 specified properties. As mechanical verifiers become
. more powerful such a proof should be mechanizable.
;‘ In addition, the recent attempt to design numerous operating systems ; *
that are inherently structured has led to a collection of canonical T!r

designs that are, in principle, instantiable to meet many applications.

- Thus, the design of an operating system is not as onerous an undertaking _

' as it once was. e
g ~®
. The Computer Science Laboratory of SRI International, has developed C
E a formal methodology for software development and verification called

HDM (Hierarchical Development Methodology) [10] [11] [12] [13]. HDM is

‘ based on the ideas of Dijkstra, Parnas, Hoare, and Floyd, and on certain ;{'j
Ef new principles that we developed in the course of applying HDM to real v
Ef applications, e.g., TACEXEC. A key aspect of HDM is the language ;jhi
5 SPECIAL (SPECIfication and Assertion Language), which is used to specify ff}ﬂ

the functional behavior of modules, the basic unit of composition in - 'j

HDM. By composing a specification for a system, the effort of proving
the correctness of the system can be decomposed into two steps: (1)

proving the specification with respect to an abstract requirements .
statement, and (2) proving the design with respect to the specification. ;?:4
By hierarchically structuring the system, the implementation proof
itself is decomposed into manageable units that mirror the system jf;{;-f

structure. This report presents a requirement statement that embodies

the notion of multi-level security and contains sample proofs of the 31iid
specifications with respect to that statement. We also present an ]
informal proof demonstrating that the scheduler's specification implies 3;}:

sufficient computational capacity to dispatch tasks according to their fﬂ*:

[ real time needs. ﬁ;‘.

S

§u The organization of the report is as follows. Chapter II summaries - T

L: our approach toward the design of TACEXEC. A brief review of HDM,

% adequate for presenting the details of TACEXEC, is given in Chapter III. S

- Chapter IV discusses the particular security requirements that TACEXEC "b4
is intended to satisfy. Chapter V, the most detailed in the report, . j?rﬁ
presents the design of TACEXEC. Chapter VI presents a message fi;{
processing system, an example of an application subsystem that can be -

! ol

' 2 ]
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realized using TACEXEC. An introduction to some of the issues relevant
to a future implementation of TACEXEC is given in Chapter VII. The

criteria for selecting a high-level programming language that is matched
to both HDM and TACEXEC are discussed in Chapter VIII. Finally, Chapter
IX summarizes the impact of the work and lists topics that are
extensions to the TACEXEC investigation. Six appendixes present:

The specification of the modules of TACEXEC.

The specifications of a module that provides message
handling facilities.

The rules for multilevel security.

An itlustration of how the TACEXEC design is proved with
respect to multilevel security.

A description of the algorithm that is used to schedule
tasks on RTOS and a proof of its adequacy.

A description of SPECIAL.

The design of TACEXEC is complete, and an implementation is planned
at CORADCOM under the direction of Dr. E. Leiblein of CENTACS.
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ITI DESiIGN APPROACH

In this chapter we summarize the approach that was followed to
attain each of the six objectives indicated in Chapter I. Before
starting this discussion, let us review the well-established purposes of
an operating system; namely to:

& Provide an interface (collection of operations) to the user

that is more powerful than that associated with the bare
hardware.

# Manage the resources of the computer, which generally means
allocating them among the users so that the resources are
kept as busy as possible.
Some difficulties are introducea by the need to handle real time
behavior, but again there are well-established techniques for this.
What makes this project challenging are the objectives of security,
provability, portability, generality, and the desire of the Army to have
an system that has sufficient generality, powere and simplicity to serve
as a model for future systems development. Our approach toward
achieving these goals is outlined below.

A. Real Time Behavior

The intent of TACEXEC is to satisfy the computational needs of
tasks in a tactical enviromment. For real-time tasks this need is to
process tasks within a specific time frame. Among the tasks that might
be served by TACEXEC is a scanning radar, which delivers signals at
regular intervals. Another task could be a fire control system that
requires extensive service, but only in bursts. Message transmission is
another task that is typically of low criticality, except that there
might be a maximum delay that is acceptable for the transmission of a
message. Each of these tasks poses different needs on TACEXEC, leading

us to define three classes of tasks: iterative, demand, and background.

]
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How does the system guarantee service requirements, particularly
for the iterative and demand tasks? That is, how is it assured that the
system loading is low enough such that the service needs will be met in
the worst case of demand, but not too low so as to preclude the
inclusion of additional tasks that could be handled. In Appendix E we
consider this problem and demonstrate the following. There exists an
optimal algorithm A (based on task deadlines) for the allocation and
scheduling of tasks such that all tasks are dispatched on time and no
other algorithm A' permits the allocation of additional tasks.
Unfortunately, the processing time required for this scheduling
algorithm probably precludes its use in typical real time systems. In
its place we suggest a scheduling algorithm based on task priority -- an
easily implemented algorithm -- for which tasks are guaranteed to be
dispatched in time and the system can be loaded in excess of 60% of its
processing capacity while guaranteeing that all tasks will be completed

in time.

B.  Functional Capability

In general, the interface provided by a real time operating system
need not be as powerful as that for a general purpose time-sharing
system (e.g., Multics). However, a real time operating system is
intended to execute collections of interacting programs and should have
sufficient functionality to realize some reasonably complicated
subsystems. In TACEXEC we provide the following features at the user
interface.

% vyirtual memory consisting of dynamically creatable address

spaces and segments

% a file system

% a user I/0 system

%  processes

8 asynchronization primitives
Conspicuously absent from the system are: directories, linkage sections,
and support for procedures, as well as other facilities that are found
in general purpose operating systems such as Multics such facilities are
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useful for program development and for setting up the real time system,
but the hight overheads preclude their use in real time operations. It
should be noted that these latter facilities could be built out of the
TACEXEC facilities if desired. Thus, TACEXEC can be viewed as a kernel
out of which a more complicated operating system could be constructed.

C. Efficiency

As indicated above, a classic principle underlying an operating
system is the efficient management of resources (cpu, disk, main memory,
etc.). In a real-time operating system this principle is in conflict
with, and of secondary importance to the guaranteeing of timely service
to tasks. 1In particular, the efficient management of tasks often
introduces nondeterminism such that accurate performance prediction is
not possible. Fortunately, the critical tasks (iterative and demand)
typically require little memory and cpu time for each execution. Also,
there is little sharing of I/0 devices in a real time environment. Such
tasks can therefore be given total access to all needed resources of the
system for the short time required for execution. Also, if the program
and data for these tasks is retained in main memory, then it is possible
to guarantee (by th2 proof outlined in Appendix E) that the service
needs of these tasks are met. This characteristic of the tasks led us
to the decision that the virtual memory system is to be totally resident
in main wemory.

There are other issues regarding the efficient realization of
TACEXEC. A high level language is desirable for easing the burden of
implementation and to aid in portability (see F below). However, there
are important features of a high level language that relate to
efficiency. These are discussed in Chapter VIII.

Some operating system functions, such as interrupt handling and
content switching, have very significatnt effects on the real tme
performance of the system. As is discussed in Chapter VII, some
additional hardware support for these functions would result in a
substantial improvement in the performance of the operating system.
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D.  Security

TACEXEC is intended for an environment where multiple users have
simul taneous access to the system, and each user wants to be assured
that his information is not available ‘o others without proper
authorizations. That is, the system is not to be a vehicle for the
erroneous disclosure of information. For this environment, the multi-
level security model appear to be appropriate. In this model, each user
has a glearance and a category set; the cartesian product of clearances
and category sets define a partial ordering of security levels. The
values for clearance are the conventional classifications: UNCLASSIFIED,
CONFIDENTIAL, etc. The categories represent an orthogonal restriction,
and include such "controls" as NATO, ATOMIC. The model requires that
information stays at security level at which it originates or flows to

move secure levels.

The model also includes the notion of intezrity which provides
additional restrictions on the flow of information. For example, using
the security restriction alone, there are no limitations to the "upward"
transmission of information. That is, the model does not prevent the
"destruction™ of a SECRET document by an UNCLASSIFIED user. The
inclusion of integrity places limitations on such modification.

The model that includes security and integrity is developed in
Chapter IV as an extension of the work by Bell and LaPadula, and Millen
at Mitre. The model is also discussed in a recent paper [3] and is
currently the basis for security proofs in the KSOS (Kernalized Secure
Operating System) kernal [14].

E. Provability

TACEXEC has been designed to be provable, in particular by an
automated program verifier. The main properties of concern are security
and real-time adequace, i.e. the guaranteeing that tasks will receive
promised service. Other properties, potentially of interest, have to do
with to guaranteeing that the user interface operations provide the
intended functional behavior.

T Y, T L - - . N » .

A A T




As described in Chapter III, the development of systems according
to HDM is accomplished in gtages. For example, in the specification
stage, each of the system modules (a module is provided for each
"facility") is formally described by a specification. 1In the
implementation stage, the operations of each module are implemented by a
program. (The other stages are described later in the report.) A proof
is associated with each stage. For example, it is possible to prove
that the multi-level security model is satisfied by the specifications
of the modules of the user interface of TACEXEC. Illustrations of such
proofs, called design proofs are given in Appendix D. It is also
possible to prove that the guarantee of service property is satisfied by
the user interface specifications. Separate proofs, called
implementation proofs, not yet carried out for TACEXEC, can demonstrate
that the programs are correct with respect to the specifications.

This separation of proofs serves to simplify the overall proof
process, as any useful decomposition of effort should do. In addition,
it limits the amount of reproving that must be done as the system
evolves. For example, a change to the implementation (eg. to enable
TACEXEC to be installed on a different processor) does not reguire any
change to the design proof if the specifications are left intact.

F. Portability

No real time operating system can be totally portable. In order to
achieve efficiency, there will always be machine-specific code. Our
concern was to design a system where the amount of effort required to
move TACEXEC from a machine on which it is successfully executing to
another machine is small.

Much of the effort involved in developing a system is associated
with "design." In general, design is concerned with deciding what a
system is to do, while avoiding details on how it is done. In HDM, the
initial stages are concerned with design, while the later with
realization. The output of these early stages is a set of
specifications for the modules and a precise description of the




structure of the system. These can serve as the design for TACEXEC
independent of the hardware on which it executes.

Furthermore, a system developed according to HDM is usually - ﬂi
designed as a hierarchy. (The TACEXEC hierarchy consists of five 3
levels.) Typically, the modules of the upper levels are implemented by
software, the middle levels by a mixture of hardware firmware and
software, and the lower levels by firmware and hardware. Thus, if a *IV
high level language is used for the implementation, many of the programs
will remain intact in going from one hardware to another.

RN
!
v -
ol
~ -
i &
ol o
. -
L .
Qf ®
- = 1
-
b‘,.-‘
., L
oK
o
..l
Bl
r".:
-
o
ot
o
bt

10

TETT T AW I NI e

1
f
]
]
n
|

i

!

|
|
|
J

!

R |

| 4
2
2

P T VN S SR T PR VS P

P S N N S S



w e v
- GO

Vrvvfrv
- . .0 Rt

-t
H

Ty vy

T

III  SUMMARY OF HDM

In this chapter we summarize the Hierarchical Development
Methodology (HDM) that was used in the development of TACEXEC. A reader
familiar with HDM or another specification--oriented methodology may
find it unnecessary to read this chapter.

A.  Overview of HDM

In HDM a system is realized as a linear hierarchy (a sequence) of
abstract machines, sometimes called levels. The top level is called the
uger-interface, as the user of the system perceives only this level.

The bottom level is denoted as the primitive machine. These two
machines together are denoted as the extreme machines. The remaining
levels are called intermediate machines. An abstract machine consists
of operations, each of which has a unique name and formal arguments. An
operation is invoked (an invocation being similar to a subroutine eall
in a conventional programming language) by associating actual values
with the operation's formal arguments. The invocation of an operation
can return a value and/or modify the internal state (abbreviated as
state) of the machines, as reflected by the values of the machine's
abstract data structures. The return of an operation can be either a
concrete value or an exceptional return, the lLatter corresponding to one
of a number of conditions defined on the state of the machine and the

supplied arguments.

The operations of the of the primitive machine are a mix of (1) a
subset of those of the hardware on which the system runs, and (2)
constructs of a programming language made available to the sytem
developer to hide certain (usually tedious) features of the hardware.

The user-machine provides the operations that are available to the
user of the system, and thus enriches the basic instructions of the
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primitive machine. In selecting the intermediate machines. the designer
is proposing building blocks to ease the step from the user-interface to
the primitive machine.

A machine gpecification characterizes the value returned and the
new state for each possible operatin invocation as dependent on the

state of the machine.

In a hierarchy of machines M1, caey Mn (where M1 is the primitive
machine and the Mn the user-interface), the realization of Mi (i>1) is a
two-step process. First, the abstract data structures of Mi are

represented by those of M1_1. Second, each of the operations of Mi is

implemented as a program in terms of the operations of Mi-1‘ The

collection of implementations for all machines M1 (i>1) constitutes the

system implementation.

Usually, a machine is decomposed into smpler, separately
implemented units called modules. A module, similar to an abstract
machine, contains operations and data structures. For purposes of
specification, the modules of a machine form a partial ordering. That

N and mJ of a machine mi > mJ means that the

specification of some operation of mi depends on the values of data

is, for two modules m

structures in m,. For a well-conceived modular decomposition, there is

J
little intermediate dependency.

Clearly, the system implementation is the desired end-product of
the system development process. However, its creation is accomplished

in stages as discussed below.

12
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B.  Stages of HDM
The creation of a system is organized into seven stages as follow.

(1) Conceptualization -- The statement of the intent of a
system in abstract terms.

(2) Highest- and Lowest-Level (extreme) machine definition --
The description of the modular organization of the user
interface and the primitive machine, and the declaration
of the operations and data structures of each module.

(3) Intermediate machine definition -- The description of a

sequence of abstract machines, between the two extreme
machines, that serve as building blocks. Each
intermediate machine is described in terms of modules and
functions in a manner as employed in Stage 2 for the
extreme machines.

(4) Module specification -- The act of giving a formal
specification to each module of the system.

(5) Data representation -- The statement of how the data
structures of each machine (exéept the primitive machine)
are composed from the data structures of the next lower-
level machine.

(6) Implementation -- The statement of how the operations of
each module (except those of the primitive machine) are
implemented in terms of those of lower-level modules.

(7) Coding -- The formulation of the implementations via
constructs of an executable programming language. This
stage can be avoided if the implementation of modules
(Stage 6) is described using an executable programming
language.

An important aspect of staged development is the separation of
decisions. In each of the stages of development, the developer
formulates decisions and writes them down in formal notation. The
stages have been ordered so that the important decisions -- those that
have major impact on the system--are confronted early in the development
process.

It should be clear that a system is not necessarily created by a
single pass through the stages. Significant iteration is certainly to
be expected. The ordering of the stages might best be viewed as a
scheme for making the decisions that ultimately lead to the system
implementation and as a technique for documenting a completed system.

13




For TACEXEC, we have carried out the first four stages. A brief
introduction to SPECIAL, the specification language appears in Appendix
F‘

:
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IV  SECURITY REQUIREMENTS FOR TACEXEC

In the TACEXEC we wish to enforce a restriction on the way
information may be passed from task to task. The particular restriction
of interest is called multilevel security. Each process has associated
;?i with it a CLEARANCE and a CATEGORY SET. The system has a fixed finite
i number of clearances that are totally ordered by the relation "“less .
than". For example, the clearance CONFIDENTIAL is less than SECRET, ""
which is less than TOP SECRET. For convenience, clearances are
represented as integers.

A category set is any subset of the set of all possible categories. Lik
Examples of categories might be ATOMIC and NATO. The combination of a "
clearance and a category set is called a SECURITY LEVEL or equivalently o
ACCESS LEVEL; for simplicity, it is often called just a LEVEL when
ambiguity is not likely to arise. A security level L1 is equal to a .-.,.
security level L2 if and only if the clearance of L1 is equal to the 4
= clearance of L2 and the category set of L1 is equal to the category set
E;@ of L2. A security level L1 is said to be less than or equal to a
» security level L2 whenever the clearance of L1 is less than or equal to
!! the clearance of L2, and the category set of L1 is a subset of the o
f;; category set of L2. L1 is less than L2 whenever L1 is less than or
equal to L2 and L1 is not equal to L2. Thus the set of all security
levels can be partially ordered. Note that not all security levels are
related by the partial ordering, e.g., two processes with respective -
security levels <SECRET, {ATOMIC}> and <SECRET, {NATO}> are not s
comparable. The security levels and the relation "less than" define a

lattice since there is a minimum and maximum clearance, and a maximum :
set of categories. —

In informal terms, a system is MULTILEVEL SECURE if and only if,

for any two processes P1 and P2, unless the security level of P1 is less

15
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than or equal to the security level of P2, there is nothing that P1 can
do to affect, in any way, the operation of P2. That is, P2 is not able
to know anything about P1, not even the existence of P1. This
constraint implies that P1 cannot affect the operation of P2 using an
intermedjiate process P3. It is not possible for a process at a higher
level to transmit information to a process at a lower level. Therefore,
INFORMATION CAN ONLY FLOW UPWARD IN SECURITY OR REMAIN AT THE SAME
LEVEL, i.e, can only flow to processes of greater or equal security

level.

The above constraint is consistent with the real military security
situation, since -- for example -- an individual whose category set
contains only ATOMIC cannot pass information to an individual whose
category set does not contain ATOMIC, independent of the latter's

clearance or the other components of his category set.

A. Manifestation of multilevel securitv in the TACEXEC design

In order to ensure that the TACEXEC design is multilevel secure,
the rule of upward information flow must be manifested in the
specifications for the TACEXEC. Multilevel security appears in the
specifications in three ways. First, each repository of information in
the specifications must be assigned a security level. This is
accomplished by adding one additional argument to each primitive V-
function (primitive V-functions are the data structures of a machine and
thus are repositories for information ) which gives the security level
of the particular reference to that primitive V-function. Second, an
argument is added to each visible function of the specifications that
gives the security level of the invocation of the function. This
argument is implicit in that it is supplied by the system, not the
calling procedure, thereby guaranteeing its accurracy. Third,
exceptions are included in each function that abort any function
invocation that would cause information to be transferred from one
primitive V-function reference to another primitive V-function reference
or from the caller of the function to or from a primitive V-function
reference in a manner inconsistent with the upward flow of information.
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Using this technique, multilevel security can be added to any
design, however the added exceptions may be so restrictive as to make
the resulting system useless or very difficult to implement. It is

! therefore advisable to incorporate multilevel security into the design
as it is being formulated.

o«

Lol N

B. Multilevel Intezprity
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The multilevel security model does not prohibit a process at some
security level from modifying information at a higher security level. R
However, there are many cases in which such a prohibition is desirable. :.,Q

Biba [2] has identified the concept of integrity to solve this problem. h"
Integrity is the precise formal dual of multilevel security. In i
addition to a security level, each process of the system has an ;:';
associated integrity level. The set of integrity levels is identical to  _
the set of security levels and has the same relation "less than". A -ﬁfi

system has multilevel integrity if and only if, for any two processes P1
and P2, unless the integrity level of P1 is greater than or equal to the
integrity level of P2, there is nothing that P1 can do to affect, in any ]
way, the operation of P2. Therefore, information can only flow downward ,!’
in integrity or remain at the same integrity level. Integrity can be ]i:a
used to limit the upward flow of information enforced by multilevel O
security. It is important to remember that a process's security level ii?i
and its integrity level need not be the same. The primary advantage of B
using integrity as a further means of restricting information flow is :
that, being the formal dual or security, it adds no significant

g complexity to the security model and no significant complexity to the o
1 proof of a secure system design. .

Ty
-t .. e

Multilevel integrity has been included in the TACEXEC design of
Appendix A. Since anything that applies to mutlilevel security also
applies to multilevel integrity as its dual, there is no further

& discussion of integrity and the reader should understand that all —
?; discussion of multilevel security applies to multilevel integrity as

N well.

i 4
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C. Proof of the Multilevel Security of the TACEXEC design

In order to prove that the TACEXEC design is multilevel secure, it o
is necessary to have a precise statement of the multilevel security T_‘A
described above and a precise formulation of the TACEXEC design, and to
prove that the precise statement of security and the formulation of the

design are consistent.

Several precise statements of multilevel security have appeared in
the literature including [1] and [5]. The precise statement of
multilevel security to be used in this report is given in Appendix C.
The precise formulation of the TACEXEC design is given as the ..‘
specifications of Appendix A. The proof of consistency is demonstrated
in Appendix D.

D. Security of the Implementation _'4
Multilevel security is the only explicit form of security specified s

for the TACEXEC. However, when implementing the TACEXEC an additional
form of security is necessary that is implied but not explicitly stated

in the specifications. It is essential that the implementation of the ,:.q
algorithms that realize the specifications be inviolate. In other ’ :
words, it must not be possible for an TACEXEC process to be able to - -1%
modify the software or hardware that implements the specifications. For :

4

hardware, this security constraint is generally equivalent to the .
physical security of the machine. For software (and firmware) the '
problem is more difficult. Many modern machines have means of

protecting system programs from being tampered with by applications
programs. Features such as separate user and supervisor states allow .
such protection to be implemented. However, guaranteeing the isolation '
of the implementation software is essential to any other forms of

security provided by the system.
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V  SYSTEM DESIGN

The TACEXEC provides four basic resources to allow users to perform
desired computations in real time. The four resources are:

PROCESSES - A process is the entity that executes programs and,
therefore, performs the desired computations.

VIRTUAL MEMORIES - Associated with each process is a virtual memory.
The virtual memory consists of a fixed number of segments.
Each segment is a linear address space of fixed size memory
units (words, bytes, bits, etc.). All the memory units are
directly addressable as operands to instructions and the
contents of a memory unit can be accessed in an amount of time
on the order of an instruction execution time of the machine.
There is a limited amount of virtual memory storage.

FILES - Files provide an alternative form of storage to the virtual
memory. Files may only be accessed in their entirety, i.e.,
the entire contents of a file may be copied into a segment of
a virtual memory or the contents of a segment may be placed in
a file. It is not possible to access individual words, bytes,
or bits of a file. The amount of flle storage will, in
general, be much greater than the amount of virtual memory
storage.

I/0 CHANNELS - Channels provides a means and minimal conventions for
communicating with particular I1/0 devices that are connected
to the TACEXEC. Means are provided for sending data and
commands to devices and for receiving data and status
information. Some basic synchronization is possible between
devices and processes.

These resources are sufficient for accomplishing any necessary
computation. They have been chosen to permit simplicity of system
design, ease of use by programmers, minimal system overhead, and
predictable real time performance.

19
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A. DISPATCHER

The DISPATCHER creates the abstract object called a process. A
process is the entity that executes the instructions of a program
necessary to compute some task. The DISPATCHER provides three
operations for instantiating a process (i.e., creating a process that
will execute the instructions of a given task),
SCHEDULE_ITERATIVE_PROCESS, SCHEDULE_DEMAND_PROCESS, and
SCHEDULE_BACKGROUND_PROCESS. These three operations require, as
arguments, sufficient information to locate and interpret the
instructions to be executed, and to assure the proper real time behavior
of the process. The arguments common to all three operations are:

p - the identifier of the process

p_c - the program counter which is the address of the next instruction
to be executed by the process p

m_s - the contents of the machine registers of the process when it
begins executing

The remaining arguments describe the desired real time behavior of
jterative and demand processes and are different for each:
ITERATIVE PROCESSES
int - the interval of periodicity for the process (the process must
be permitted to run once in every "int" time units

dur - the duration of execution of the process (the process must be
allowed to run for "dur" time units within the given interval)

begin_time - the time at which the process should first begin
running
DEMAND PROCESSES

e - the external event whose occurrence will cause the process to
begin running

dur - the maximum number of time units the process will run when an
event "e" occurs

min_period - the minimum number of time units between two
occurrences of the event "e"

Whenever a process wants to wait for some notification from another

process, or has completed its current iteration (in the case of an
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iterative process), or has finished processing an occurrence of an event
(in ths case of a demand process), it does so by invoking the operation
BLOCK. The operation block will not return to the invoking process
until the awaited notify occurs, the time for the next iteration of the
process arrives, or the awaited event occurs. Although a process cannot
detect that processor multiplexing is taking place, an invocation of the
operation BLOCK is an indication to the DISPATCHER that the invoking
process can relinquish the processor on which it is currently running
and that a different process can now use the processor. However, an

invocation of BLOCK looks to the invoking process simply like a delay.

The operation TICK describes the effect of the passage of time
(i.e., the incrementing of the clock). It is not necessary (and, in
fact, would not be reasonable) to implement the indicated effects at the
time the clock is incremented; these effects can be achieved by other
means.

The operation OCCURRENCE indicates that the event given as its
argument has occurred causing demand processes awaiting that event to
begin running. The operation NOTIFY causes all processes waiting for
the given "wakeup" to begin running. A process invoking the operation
WAIT, with some "wakeup" as an argument, indicates that when that
process next invokes BLOCK with an argument of TRUE, that the process
will await the occurence of a NOTIFY on that wakeup. The operation
CONTINUE cancels the effect of the preceding WAIT if one has been
invoked since the preceding invocation of BLOCK. The remaining
operations of the DISPATCHER: CREATE_PROCESS_IDENTIFIER, CREATE_EVENT,
and CREATE_}'AKEUP, simply perform the action indicated by their name.

In order to implement the above operations, any implementation of
the DISPATCHER must maintain state information. There must be a list of
all currently instantiated processes and information about the state of
execution and the scheduling of these processes. This information is
represented in the specification of the DIPATCHER by the primitive V-
functions H_PROCESS_EXISTS and H_PROCESS_INFO. The information about
each process maintained by the V-function H_PROCESS_INFO consists of the

21
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type of the process (i.e., iterative, demand, or background), the next
time the process should begin to run, the interval of iteration for
iterative processes or the minimum time between events for demand
processes, the run time required by an iterative or demand process for
each iteration or event occurrence, the event a demand process should

wait for, the wakeup a process is waiting for if it is waiting for a

wakeup, the program counter of the process, and the state of the
process' registers. Each process can be properly scheduled and
dispatched based on this information. The remaining piece of
information returned by H_PROCESS_INFO, processing _remaining, is the .
g. number of time units of duration that have not yet been expended in the -9
current iteration. This information is not essential to the scheduling :

algorithm, but it does increase the reliability of the system. If a

. o
Aoivas ans o8

process runs for longer than its stated duration during some iteration,
then it is permitted to continue running on a low priority basis, i.e. 4."
it may be preempted by a higher priority process. In this case the
errant process may miss some iterations, but it will not effect the real
time performance of any other processes. In addition, the DISPATCHER
maintains a list of processes waiting for a wakeup (H_WAITING_PROCS), ﬁ'
the current time (H_TIME), and existing events and wakeups |
(H_EVENT_EXISTS and H_WAKEUP_EXISTS).

Most of the complexity of the specification of the DISPATCHER iz ¢-.
the definitions. It is, therefore, useful to briefly describe the -
purpose of each of the definitions. The definition
TIME_CRITICAL_PROCESS returns TRUE if its argument is an itcrative or
demand process. PROCESS _READY returns true if its argument could be
running but isn't. PROC_PRIORITY returns the priority of a given - 4
process. Iterative and demand processes have higher priority than
background processes. Also, processes with shorter intervals have S
higher priorities than processes with longer intervals. READY_PROCESSES
is a 1ist of processes ready to run in decreasing order of priority. -
PREEMPTABLE_PROCESSORS is a 1ist of all the processors in increasing :
order of the priorities of the processes running on each of the
processors. The PROCESSOR_UTILIZATION of a given iterative or demand
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process is simply the fraction of the processing power of a single

processor that the process could possibly'consume in the worst case.

For an iterative process, the worst case occurs if the process runs for
its full duration at each iteration. For a demand process, the worst o
case occurs when events occur at the maximum possible rate and the
: process runs for its full duration at each occurrence. LN _2 simply
i represents the natural logarithm of 2.

Once these definitions are understood, the effects of each of the T
specified operations are simple to understand. For example, consider j";:
, the specification for the BLOCK operation. The effects of this :’131
E operation state that the first (higest priority) process on the list of -ﬂ'_‘

ready process will begin to run on the processor previously occupied by

J the process invoking BLOCK. The time for the next iteration of the

' newly running process is revised and the processing remaining for this S
; process is set to its full duration. The specification of the time of :m;;i
the next iteration (next_service) appears to be rather complex. This o
complexity is necessary for the case, discussed earlier, in which a L
. process runs for a time exceeding its stated duration. In this case, it e
will miss all iterations which arrive until it finally calls block. ;'ﬁi:
This somewhat complex specification for next_service permits the process o]

to become resynchronized with its iterations.

Or consider the operation TICK. If any ready process has a higher
priority than some running process, then the running process is e &
[ preempted by the ready process and the high priority ready process runs. B
i The real time clock is incremented and the processing time remaining for
each running process is decremented. Note that the processing time for

IR L )

all processes that are waiting and would have been runnning if they had a @
not been waiting are also decremented. Therefore, a waiting process is

considered to be the same as a running process for the purpose of

computing its real time performance.
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B.  SYSTEM INPUT/QUTPUT

The TACEXEC does not support any particular types of input or
output device, it simply provides a means for communicating with any
device that may be connected to the system. The communication protocol
is made very simple and general to make it easy to use and to permit
utilizing a great variety of different types of devices. Since the
opertions of the SYSTEM INPUT/OUTPUT module are not visible at the
TACEXEC system interface, no security constraints are placed on the use
of the various communication channels. The multilevel security
constraints are imposed by the USER INPUT/OUTPUT module which is the

user interface to the communication channels.

Each communication channel is identified with an integer. There
are four operations for communicating with an input/output device. Each
of these operations requires an integer as an argument to identify the
channel being addressed. This integer is called the "device index".

The READ_DEVICE operation inputs a unit of data from the device.
WRITE_DEVICE outputs a unit of data to the device. SEND_COMMAND sends
control information to the device and RECEIVE_STATUS returns information

about the status of the device.

The information transferred by each of these operations is
bufferred. Each channel has four buffers, one each for input data
(H_INPUT), output data (H_OUTPUT), commands (H_COMMAND), and status
information (H_STATUS). This means that the process communicating with
the device and the device itself do not have to be completely
synchronized. However, some synchronization is necessary. For example,
a process cannot send a second unit of data to a device until the first
unit of data has been received by the device. In general, if a process
tries to send or receive information to or from a device at a speed
significantly faster or slower than the device is receiving or sending
that information either an exception will result or information may be

lost.

In order to send or receive information to or from the system, the
device has four operations that it may invoke. DEVICE_OUTPUT receives
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data sent to it by the system and DEVICE_INPUT sends data to the system.
DEVICE_COMMAND receives control information sent by the system and

CHANGE_STATUS modifies the status information returned by ;——‘«
RECEIVE_STATUS. In addition, CHANGE_STATUS may cause an event to occur R
if its second argument is TRUE. Each device can cause some particular ffalﬁ
event to occur and the event caused by each device is determined by the 11111
operation SET_EVENT. Note that the device index of the operations that -...r
can be invoked by a device is an implicit argument of the operation.

This is because the system knows which device index corresponds to each
channel and it is not necessary and undesirable for the device to .
provide this information. The four operations that can be invoked by .,.'.4
devices would normally be implemented in hardware. The operations

invoked by TACEXEC processes may or may not be implemented in hardware.

c. VIRTUAL MEMORY

The virtual memory of the TACEXEC consists of some address spaces
each of which contains some number of segments. Each process in the
TACEXEC is associated with some address space. The address space t
contains all the directly addressable storage accessable to the process. - .]

Each address space can contain some fixed predetermined number of

Segments. A segment is essentially an array of storage units (words,
bytes ,bits, etc.). A process can address a storage unit by giving a . ,:
segment number and a segment index. The segment number identifies a 'J
segment in the address space associated with the process, and the ) j
segment index specifies a storage unit in that segment. When a process . 1
is executing on a processor, all the segments of the address space x
associated with that process will be contained in directly addressable ; ::i;’
memory. This assures that data in storage can be addressed quickly in ‘
order that real time constraints can be met.

Each address space has an associated storage quota. The storage

quota of an address space is the maximum number of storage units that - e q
can be contained in segments belonging to that address space. Both '
address spaces and segments can be created and destroyed. A segment can

v
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be shared (accessed) by more that one address space, however, each
segment is owned by only one address space, the address space in which
the segment was created, and the storage units of the segment are

considered to be part of the quota of the owning address space.

The VIRTUAL MEMORY module is the lowest level module containing
operations accessable at the system interface. Therefore, it is
necessary that these operations be multilevel secure. Much of the
complexity of the VIRTUAL MEMORY module is due to the necessity to
enforce the multilevel security constraints. In the following
discussion the virtual memory is discussed without mention of multilevel
security, as the basic design is not a consequence of any security
constraints. The addition of the multilevel security constraints to the
basic virtual memory design is straghtforward.

The data necessary to support the virtual memory includes the
currently existing address spaces (H_AS_EXISTS), the quota for each
address space (H_AS_SIZE), the segment corresponding to each segment
number of 2ach address space and whether or not that segment is owned by
the address space (H_AS_ENTRY and H_AS_ENTRY_OWNED), and the contents of
each storage unit of a segment (H_READ). The primitive V-functions
H_AS_USED and H_SEG_USED are needed to generate degignators for address

spaces and segments.

The function CREATE_ADDRESS_SPACE returns a designator for a newly
existing address space with the given quota and at the given access
level. Initially a newly created address space contains no segments. A
segment can be created by CREATE_SEGMENT. The newly created segment
will have the given segment number in the given address space. The size
of the segment and its initial contents are also given in the invocation
of CREATE_SEGMENT. The address space in which a segment is created is
said to "own" that segment. This means that the storage used by the
segment is charged against the storage quota of that address space and
that the segment may be deleted only from that address space. The
function GET_SEGMENT adds an already existing segment to the given

address space. This function is used to allow processes operating in
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different address spaces to share the same segment. The function
DELETE_SEGMENT removes a segment from the given address space. If the
segment being removed from the given address space is owned by that
address space, then the segment is deleted. Deleting a segment
effectively removes the segment from all address spaces from which it
could be accessed. The function DELETE_ADDRESS_SPACE deletes the given

address space and all segments owned by the given address space.

The functions SEGMENT _READ and SEGMENT_WRITE read and modify
respectively the specified word in the segment with the given segment
number in the address space of the invoking process. The specifications
for the function SEGMENT_WRITE are somewhat complex because the system
permits information to be written by a process of lower security level
to a segment of higher security level. However, in this case the system
is not permitted to inform the user whether or not the writing operation
was actually accomplished nor even if the segment being written actually
exists. Therefore, if the function GET_SEGMENT is invoked to enter a
segment from a higher level address space into the invoking process's
address space, it is necessary for the system to pretend that the
segment exists even though it may not. One of these phantom segments is
represented in the specifications by having H_AS_ENTRY for the segment
being undefined and having H_AS_OWNED being defined.

The functions SEGMENT_CREATE and SEGMENT_DELETE are nearly
identical to the functions CREATE_SEGMENT and DELETE_SEGMENT.
SEGMENT_CREATE and SEGMENT_DELETE are intended for use at the system
interface and therefore, are restrictive in how they may be invoked.
CREATE_SEGMENT and DELETE_SEGMENT are intended for use within the system
and therefore, permit greater flexibility.

D.  EILE SYSTEM

The file system contains data which is collected into repositories
called files. Unlike segments in the virtual memory, the data in files
may not be accessed individually by words, the file may be accessed only

as a unit. In order to access individual elements of data in a file,
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the contents of the file must be loaded into a segment where the data

may then be accessed using the virtual memory operations SEGMENT_READ
and SEGMENT_WRITE. It is intended that the data in files be stored on - R
bulk storage devices for these devices are well suited to storage

accessed in this manner. .

As with virtual memories there are storage quotas on the amount of
data that may be stored. There is a storage quota for each access level é‘«
that restricts the number of data storage units that may be collectively

contained in files at the access level.

All the state information of the file system is embodied in the V-
function H_FILE_CONTENTS of the specifications. Each file has a name i
and an access level. If the value of H_FILE _CONTENTS is undefined for a o
given name and access level, then that file does not exist. If,
however, the value of H_FILE CONTENTS is defined then the value is a :
vector of the data in the file. -w

The operations CREATE_FILE and DELETE_FILE create and delete
respectively a file of the given name at the access level of the
invoking process. A process cannot, of course, create a file with the

same name as an already existing file at that level. The operation 1
LOAD FILE copies the contents of the file with the given name into a ;"f
newly created segment with the given segment number in the invoking "3
process's address space. The access level of the file is determined by ;;i
a given access level argument to LOAD FILE. The operation UNLOAD FILE o4
copies the contents of the segment with the given segment number in the ,f
invoking process's address space to the file with the given name at the
access level determined by the given level argument. The file must Z:
already exist and the previous contents of the file are destroyed. The ;’?
operation APPEND_TO_FILE is similar to UNLOAD _FILE except that the
previous contents of the file are not destroyed and instead the data T
from the segment is appended to the end of the file. ;3
-7
K
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E. PROCESS PRIMITIVES

The operations of this module are much the same, in function, as
those of the DISPATCHER. However, at this level, the level of PROCESS
PRIMITIVES, the specifications are written from the point of view of an
individual process, rather than from the point of view of the system.
For example, in the dispatcher, an invocation of the operation BLOCK is
specified as one that performs processor multiplexing, whereas in the
process primitives, an invocation of the operation BLOCK is viewed as a
simple delay since this module specifies the point of view of only a
single process. In an implementation, both specifications of BLOCK
would be identical. The two different views of these modules are both
useful, depending on the particular aspect of the operation of the
system in which the reader is interested.

The operation CREATE_EVENT returns a designator for a new event.
The argument to CREATE_EVENT gives the minimum period of the event,
i.e., the minimum time between two occurrences of the event. The
operation occurrence indicates that the given event has occurred. Any
demand process awaiting the occurrence of the given event will be
activated.

An invocation of the operation BLOCK causes the invoking process to
be delayed. If the invoking process is an interative process then the
process will be reativated when time arrives for the process' next
iteration. If the process is a demand process then BLOCK will return
when the event associated with the process next occurs.

The operation TICK indicates the passage of time. Each invocation
of TICK indicates the passage of a single time unit. In an
implementation, TICK will most likely be invoked by and implemented by

special clock hardware.

The operations CREATE_ITERATIVE_PROCESS, CREATE_DEMAND_PROCESS, and
CREATE_BACKGROUND_PROCESS create respectively iterative, demand, and
background processes providing the appropriate parameters for
establishing the new processes. Note that each of these operations take
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an address space as an argument. This address space is the one that

i will be associated with the newly created process. One of the

Lt exceptions to each of these operations is RESOUCE_ERROR. This exception
3 will occur if the system is so heavily loaded with iterative and demand

e . '
LI i"‘.A_\‘L_‘N.L'(_!._ !._ ——

processes that the addition of the new process may not allow the system

to meet the real time scheduling constraints given in the

Eiadad =t oo

E! specifications. Note that since these operations are to be implemented
in terms of the operations SCHEDULE_ITERATIVE_PROCESS,
SCHEDULE_DEMAND_PROCESS, and SCHEDULE_BACKGROUND_PROCESS of the '
DISPATCHER, the exception RESOURCE_ERROR must be true whenever the ]
addition of the new process to the system would violate the assertions
concerning overloading given in the specifications for
SCHEDULE_ITERATIVE_PROCESS and SCHEDULE_DEMAND_PROCESS. s

The use of the exception RESOURCE_ERROR in the operations o
CREATE_ITERATIVE_PROCESS, CREATE_DEMAND_PROCESS, and ;-J
CREATE_BACKGROUND PROCESS, could produce a multilevel security . f"ﬁ
violation. This is because RESOURCE_ERROR does not precisely specify .
the conditions under which the exception occurs. It is possible that in
some implementation, the occurrence of this exception is dependent upon Qif
data at various security levels and, therefore, may compromise highly T
secure information. In this case the potential security violation is :

deliberate. The processing resource is to be shared by all processes at

all security levels. This means that it is possible that if the machine l‘;
is loaded with TOP SECRET processes, an UNCLASSIFIED process may not be .
able to be created (this is technically a security violation). Avoiding .

this security violation would require strict partitioning of processor '_w

resources and would lead to less affective processor utilization. In a .f
real time system, highly effective processor utilization is important T
and so this technical security violation was felt to be acceptable. 1In
practice, administrative controls on adding tasks to the system would

(] eliminate the security problem (the violation would create only a noisy

and very low bandwidth information channel in any case). T
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The operation SEGMENT_GET is simply a reformulation of the
operation GET_SEGMENT of the VIRTUAL_MEMORY in terms of the destination
process rather than the destination address space. This is possible
since the association between process and address space is known at the
PROCESS PRIMITIVES level whereas it was not known at the VIRUAL MEMORY

level.

The information necessary to define thess operations includes the
primitive V-functions H_PROCESS_EXISTS and H_PROCESS_INFO which indicate
respectively whether or not a given process exists and what its
H_EVENT_MIN_PERIOD indicates whether or not
H_TIME gives the

scheduling parameters are.
a given event exists and what its minimum period is.

current time.

F.  USER INPUT/OUTPUT

User input and output is very similar to system input and output,

the only difference being that since the user input and output is
visible at the system interface it must obey the constraints of
multilevel security. Therefore, each device is assigned an access level
(by the functional parameter H_DEVICE_AL) and each operation includes an
exception that is true if the invoking process is not at the proper

level for performing the operation upon the given device.

G. PROCESS COORDINATION
The two operations of the PROCESS COORDINATION wodule provide a

means of coordinating the the activities of two or more cooperating
The operations are the standard P and V operations and they
The V

processes.
use the value of a word in a segment as the value of a semaphore.
The P

operation decrements by one the value of the given word, however P will

operation increments by one the value of the given word.

not cause the value of the semaphore to become negative, it will wait
until it can safely decrement the value of the word without making it
negative.
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VI AN APPLICATION SUBSYSTEM--MESSAGE PROCESSING

In this chapter, we develop a subsystem that can be realized in
terms of the operations of the TACEXEC user interface. Two purposes are
served by this exercise:

# We demonstrate the general utility of the TACEXEC user

interface.

® We present a module for handling messages in a multi-level
secure manner--an interesting module in its own right.

In the following sections we present:

® A description of the specifications of the message system.

% Some embellishments that the reader might consider for
subsequent incorporation.

® A brief discussion of the realization.

A. MESSAGE SYSTEM module

We hypothesize a new abstract machine above the TACEXEC interface,
consisting of the modules MESSAGE SYSTEM and VIRTUAL MEMORY. The
specification of the latter was previously discussed so we concentrate
here on the specification of the MESSAGE SYSTEM module which is depicted
in Appendix B. It is convenient to view the module as being composed of
two groups of functions: (1) those associated with "user" management,

and (2) those associated with the handling of messages.

The former group consists of the functions: USER_EXISTS,
USER_EVER_EXISTED, CREATE_USER, and DELETE_USER, for which the major
design decisions are the following:

% Only a particular user, the "security officer", can cause

the creation or deletion of users. The security officer
exists at all access levels.

# Associated with each user is a designator (USER_ID) and a
name. The former acts as a password, presumably available
only to the security officer and the user. The "name" is
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known to all other users who wish to communicate with the
user in question.

A user whan created at some access level al, also exists
(can send or receive messages) at all access levels not
exceeding al.

For each access level there is 3 quota of potential users,
as dezlared by She parameter MAX_USERS.

Tnere is no reuse of USER_ID designators. The function
USER_EVER_EXISTED records all of such designators that have
ever been associated with users.

User names can be recycled, but all users in existence at
any instant have unique names.

I'ne security officzer is not required to obey the multi-
level security rules. For example, “he CREATE_USER
function invokad at aczcess_level al, apparently affects the
V-function USER_ZXISTS at all levels below al.

Now let us consider the design decisions associated with the
functions: MSG_CONTENTS, SND_MSG, READ_MSG, and DELETE_MSG, for which

the major design decisions are the following:

A message is a vector of words.

ALl users at a level have a quota on the number of messages
that can be rezeived and on the total amount of memory that
can be expended for message storage.

A user sending a message to another named user must
identify the access tevel at which that user will read the
message.

A sent message is the contents of a segment.

A user identifies a message by number for the purpose of
reading or deleting it.

The handling of messages obeys the rules of aulti-level
security and integrity. Thus, if the transmitting of a
message by a user oparating at security level n to a user
at n1, n1 > n, would precipitate an exception due to
exceeding the quota of the user at nl, this condition is
not made apparent to the user at n; the message is simply
not transmitted.

Tne system determines if 3 user attempting to use the
message system is a valid user.
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B. Embellishments to the Message System

Since our intention was primarily to illustrate an application
system for TACEXEC, rather than construct a elegant message handling
system, we have left out many desirable features. (A good example of a
powerful message is that developed for the ARPANET.) Among the features

that could be added to our system are the following:
% Provide quotas on the basis of access levels rather than

Just users. Clearly, system-wide quotas are not

acceeptable in a multi-level security environment.

Allow a user operating at a level n to read all messages
destined for him at any level n2 <= n, rather than
requiring him to read only those messages at his operating
level.

Allow for the forwarding of messages..
® Allow the copying of messages into segments.

% Provide a realistic LOGIN function as part of a command
level module.

C. Realizatjon of Message System

As indicated previously, the operations of the TACEXEC user
interface are to be used to realize the MESSAGE SYSTEM module. Below,
we sketch some of the representation and implementation decisions that
could form the basis for such a realizationm.

% A separate address space would be established to provide
storage for the MESSAGE SYSTEM. In particular, a segment
would store the global information on users. Some of this
information could be kept on a file, with mimimal
information retained on a segment.

% Each mail box (characterized by the function MSG_CONTENTS)
would be represented by a ssgment.

# Tne USER_ID designator type could be represented by a set
of characters.

® It is assumed that message handling is not necessarily a
critical task. Hence, the act of sending, reading, or
deleting a message could be handled by a background process
that is created just for that task. If for some
applications, message handling is critical, then a demand
process would be created at system initialization time to
handle messages.
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VII  TOWARDS THE EFFICIENT IMPLEMENTATION OF TACEXEC

We may regard the operating system as providing a virtual machine,
or rather several virtual machines, on which are run the real time
applications programs. This virtual machine could be implemented
entirely by software interpretation, as for instance an APL virtual
machine is, but this would be extremely inefficient. An implementation
entirely in hardware might be efficient, but would be expensive and
would take a long time to develop. Consequently, we must consider
implementations in which the operating system virtual machine is
implemented in part by software, and in part directly by hardware. 1In
particular, we must consider implementations using the kinds of
processor hardware that is readily available, for instance, the PDP11
architecture and the GYK-12. Examples of the operations that must be
implemented in software are:

create_segment ,

load file,
create_demand_process,
schedule_iterative_process,
ete.

Such operations must be implemented as supervisor calls to operating
system software procedures with security privileges. Examples of
operations that can be implemented directly by hardware, with
appropriate safeguards, are:

simple arithmetic operations,
conditional brands,
iteratior,

procedure entry and exit,
etc.

Some operations might be implemented as supervisor calls to software

procedures, but are used sufficiently frequently and are sufficiently
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simple that, for an efficient system, consideration must be given to
providing these operations by a snort sequence of hardware operations.
An obvious example for the PDP11 architecture is the user input/output

operations.

Clearly the operations implemented in software will be slower,
possibly much slower. Much of this delay is caused not be the inherent
complexity of the operation but instead by tne need to change protection
context so that the operating system procedure can access security
sensitive data that must not be available to real time application
programs. Another contribution to the cost of software operations is
the very careful checking of parameters to the operation, which is
necessary to ensure that accidental or malicious use of the operations

cannot subvert the security of the system.

Consequently, we must expect that a software implemented operation
will take at least 100 times as long as a operation implemented directly
by hardware, and there are many examples of existing systems where this
factor is 500 or more. This kind of larze speed ratio between hardware
and software implemented operations forces us to consider the number of
software operations that will be needed. If the ratio is 100:1 and 1%
of the operations are software implemented, then the software
implemented operations will need 50% of the processing time of tae
system. Now typical real time application programs are very snort,
seldom requiring more than 100 operations per activation, of wnhich at
least two and probably four to six will be software jmolemented.
Further, to keep the ratio as smal. as 100:1 will not be easy. Thus the
proportion of the processing time needed for software operations could
rise well above 50%.

It is important not to regard this software "~verhead" as wasted
time. These operations implemented in software are important, necessary
parts of the total system. They are no more wasted than any other
necessary operations, but they are expensive and tnus their

implementation and their use must consider this expense.
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In a non-secure operating system, many of the operations will (or
at least could) be equivalent to those of TACEXEC, and may be as
expensive as those of TACEXEC. But where real time performance is
important a non-secure operating system can be designed so that the time
required for software implemented operations is substantially Less than
in TACEXEC. Tnis saving would be obtained by eliminating the parameter
checking and changes in protection described avove, and by allowing
every program access to all the data of the system. An example of such
an approach is tne stack-based interrupt handling of the smaller PDP11.
Not only does this approach violate the security requirement, but it
also prejudices the reliability of tne system for a fault in any one
program could damage other programs or the operating system. A fully
secure system should not be significantly more expensive than a system
capable of preventing accidental damage. Below we consider alternative

methods of improving the real time performance of TACEXEC without loss
of security.

The design of TACEXEC, lLike almost all other modern operating
systems, is designed so that the simple arithmetic, logical, and flow of
control operations can be implemented by hardware without software
intervention. Almost all tne checking for sz2curity lLevel and category
is confined to the segment_create and get_segment operations, which
include a segment within the address space of a process. Subsequently
the checks, that reading is only from segments within that address
space, can be performed by hardware protection mecnanism. The
definition of segment_write in TACEXEC is appropriate only if the
nardware protection mechanism has a write only setting for access to
segments (the PDP11 does not). The value of this feature is uncertain
and in the absence of a hardware write only capability the
specifications could be simplified.

TACEXEC does not specify, but does not preclude, an implementation
in waich segments are split into fixed size pages for storage
allocation, nor does TACEXEC specify or preclude the movement of

segments or pages between storage mechanisms of different speeds. An
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implementat.ion of this kind would certainly be more complex and less
certain in its real time capabilities, but the security properties of

the system would not be substantially affected.

Similarly TACEXEC does not provide for input-output operations tnat
transfer msultiple words between storage and peripheral. Within the
PDP11 architecture it is possible to set the hardware protection
mechanisms to allow direct transfers of single data words between
processor and peripheral, without intervention by operating system
software and without prejudice to the security of the system. Devices
which require autonomous transfer of many words of data cannot safely be
used directly by real time application programs, but must be managed by
secure operating system procedures, with correspondingly higher
overhead. It would be possible to extend TACEXEC to include these
autonomous transfers, though possibly extensions for specific devices,
e.g., communications, displays, etc, would be as appropriate.

Inclusion of both paging and user defined autonomous transfars
significantly increases the complexity of the design, indeed removes the
design from the area of small operating systems into that for large -
mainframe operating systems. Security breaches have been found in many
existing operating systems because of the interactions between these two

features.

It is clear that the parameter checking is esseantial for security
and that performance improvements cannot be obtained by skimping on
these checks. Thus performance improvements must come from either
reducing the context switching time or by increasing the speed at which
operating system procedures are executed. The first of these, reducing
the context switching time, might be achieved by providing a privileged
supervisor mode with a second set of registers in which all time
critical operating system procedures are obeyed. The second
alternative, increasing the speed of execution of operating system
procedures, could be obtained by implementing them in horizontal
microprogram. This sacond alternative automatically includes the first,

for microprograms regularly have access to many additional registers,
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and it also reduces the time required for parameter checking and other
operating system functions. With horizontal microprogram speed
improvements of five to ten times have been observed, sufficieat to
reduce the time for software implemented operations to a qui.e
acceptable level.

The arguments3 against microprogramming significant parts of tne
operating system are:

(1) cost and difficultly of microprogramming,
(2) risk of error and cost of field charges,
(3) differing operating system needs for different projects,

(4) uncertainty as to what will be needed and thus risk of
future upgrades,

(5) cost of microprogram storage,

(6) division of organizations into hardware and software

teams.

Of these (5) is now negligible, and (1) is not significant if the
operating system is to oe widely used. Those aware of the real costs of
operating system changes will know that the costs of hardware upgrades
not significantly greater than for software upgrades. Many of the
differences referred to in (3) are due to attempts to avoid or alleviate
the performance penalties of a standard operating system, performance
penalties that would not be incurred with a microprogrammed operating
system. Further, differing operating systems are as great a bar to
compatibility and portability as nonstandard hardware. Given the costs
in software development that might be placed at risk by an upgrade in
fundamental operating system characteristics, it is worth thinking about
the design carefully in advance and getting it right, whether in
hardware or software. Item (6) need be no obstacle in the right

context .

A computer with large parts of its operating System in horizontal
microprogram (the GECU080) was delivered to customers in the U.K. in
October 1972. Development was not found to be particularly difficult,
the anticipated performance advantages were realized, and no subsequent
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problems of errors or inflexipility were encountered. This computer has

remained in production since then and is quite popular in the U.K.

We would recommend that 3 production implementation of TACEXEC

an

should use microprogram to reduce the time required for critical

operating system functions.
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VIII TOWARDS A HIGH-LEVEL LANGUAGE FOR THE IMPLEMENTATION OF TACEXEC

Tne design of TACEXEC is based on the concept of abstract data
types, defined by the modules of the specifications. Examples of the
types defined are:

process,
segment ,
category set,
access level,
event.

Ideally, the language used to implement TACEXEC should provide
mechanisms to allow the definition of new types, and subsequently the
use of such types with the same fllexibility as if they had been built
in. Unfortunately, very few languages currently provide for the
definition of new types by the user, and those few Languages are quite
unsuitable for TACEXEC implementation. Shortly the Ada Language (DOD-1)
will become available, and will provide the needed mechanisms. Until
then, it will be necessary to live with existing lLanguages that are less
than ideal.

Three other language capabilities are necessary for the
implementation of TACEXEC. These are:

access to low lLlevel machine faeilibies,
parallel processing facilities,
exception handling facilities.

The access to low level machine facilities is necessary to allow
the TACEXEC implementation to use hardware facilities for protection,
relocation, user processes, interrupt handling, etc. Access to low
level machine facilities are also necessary for implementing the input-
output functions of TACEXEC. These lLow lLevel facilities are required

only in certain very localized sections of program, and thus the
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language facility providing this access can be quite crude. It will
al 80 be necessary to preclude use of these Low lLevel operations by user
programs, but this restriction will be imposed by TACEXEC and the

hardware, rather than by the lLanguage.

TACEXEC needs within itself a number of parallel processes that
operate asynchronously. The facility needed is however very basic, for
the more elegant and easy to use facilities provided to user programs
are constructed by TACEXEC itself. All that is required in order to
implement TACEXEC is the ability to describe parallel processes
(programs) that share data only explicitly and the ability to construct
a1 binary semaphore s0 as to provide a program to handle a interrupt.
Access to the register and status information of suspended programs, and
use of this information to resume such programs--facilities necessary
for the dispatching functions of TACEXEC--would presumaply be provided

by access to low level machine facilities.

TACEXEC makes extensive use of exception returns to indicate
invalid use of its facilities, as do all other operating systems. Tne
specifications are written on the basis of an exception handling
mechanism distinct froa any other results returned by the operations.
Such distinction is very helpful to the programmer, to make programs
simpler and easier to understand, and also to make the compiled code
smaller. However, this distinction between exception returns and normal

returns with results is not essential to the functioning of tne system.

While a Language such as Ada would be ideally suited to the
implementation of TACEXEC, it is clear that the final definitive
language, and efficient compilers for that language, will not pe
available for, perhaps, two to three years. Other comparable lLanguages
are either only partially developed and do not yet have compilers
either, such as Euclid, Modula, Alphard, and CLU, or else require

enormous run time support systems much larger than TACEXEC, sucn as
Simula and Algol 58. Consequently, the initial versions of TACEXEC must
be implemented in some other existing Language.
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There is no reason to doubt that other existing lLanguages can be
used to implement TACEXEC. Every function required for TACEXEC can be
provided, but the programs will be lLess obvious and less easy to read
than in a language specifically intended for building systems from user
data Ltypes.

For instance, in a lLanguage without user defined data types and
without type checking, the user defined data types become simply data
items or data structures such as arrays, while the operations on the
data types become procedures. Of course, the existing compiler will not
be able to perform any type checking, thus requiring a specially
designed preprocess or much greater care by the programmers to ensure

that these operations are only applied to data items of the correct

" type" R

Access to low lLevel machine facilities, and the operations on
semaphores, might preferably also be provided as procedures, the bodies
of wnich would be programmed in assembly language. The use of
procedures will cause an additional overhead, but will restrict the
assembly code to specific procedures and will reduce its adverse impact
on the readability of programs.

Advantage can be taken of the named COMMON, COMPOOL, or equivalent
facilities of many lLanguages. The structure of TACEXEC is such that
most data structures need be accessed only by a single program module,
If this data is declared in a named COMMON in that program module only,
then the risk of inadvertent access by other program module is greatly
reduced. Unnamed or blank COMMON should never be used.

The mechanisms used to achieve parallel processes in TACEXEC must
depend on the details of tne particular language implementation.
Particular care must be taken over the implementation of local variables
and temporary variables, and also over the use of any language run time
support procedures., There is a risk that the same data storage

locations may be inadvertently used by several processes.
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In the absence of an exception handling mechanism, the exception o

returns from operations must be represented by additional parameters in

h the results returned. The values of such parameters must be tested N ..._J
h v before the other results can pe used. T

In conclusion, recent research has lLed to an understanding of the

realization of system structured as a nhierarchy of modules. The most

fJi features required of a high-level programming language for the efficient

promising language is Ada, but until its appearance several other

s languages could be used provided the programmer follows certain easily

established conventions.
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IX  CONCLUSIONS AND POSSIBLE FUTURE TASKS

main products of this investigation are

A design for the kernel of a real time operating system
(called TACEXEC) expressed as specifications for the
seven modules that comprise the system. The
specifications are written in the language SPECIAL.

A mathematical model (developed in part on other SRI
contracts) that defines acceptable information transfers
among users according Lo their security level.

A method for proving the specification of TACEXEZC with
respect to the security model, and the illustration of
this method for several of the specifications.

Several algorithms for allocating and scheduling
iterative tasks in a multiprogramming environment such
that all tasks are guaranteed to obtain service as
needed. An informal proof is given that one of these
algorithms achieves maximum usage of the system,
excluding the overhead time for the scheduler. The
algorithm that achieves lLess than optimum usage at the
benefit of a simple scheduling discipline (based on task
priority).

We believe that TACEXEC can realize the goals established in

Cnapter I: (1) capability for handling real-time tasks, (2) adequate

functional capability for supporting a variety of subsystems, (3)

efficiently implementable, (4) secure, (5) provable and {6) portable.

For example, to demonstrate (2) we described an approach to realizing a

secure message system using the primitives of TACEXEC.

We believe that TACEXEC in its present form can serve as a

practical kernel for many future array real time operating systems.
However, since there are problems related to the proof of TACEXEC and to
its use in complex configuration, we recommend the following tasks be

considered in an extension of the current investigation.

% Multiprocessor Configuration: The design of upper levels of

the current TACEXEC is not affected by the number of
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hardware processors, which impacts only the Level of
resources available. Each type of task indigenous Lo tne
tactical environment is nhandled easily by a minicomputer.

A multicomputer configuration could be effectively used for
situations where the computing requirements of the tasks
exhaust the capacity of a single machine. Our present plan
is to consider the implementation on a single processor.

We propose Lo generalize the lower levels of the design so
that they can execute on a variable number of processors,
where suitable multiprocessor hardware is available. The
main problems to be considered relate to the management of
processing and storage resouces without sacrificing tne
security or guaranteed performance.

Network Configuration: All components of the multiprocessor
configuration discussed above are assumed to be contiguous.
A more general situation would involve a geographical
separation of the computers as a network. Many of the
problems and solutions associated with multiprocessor
systems apply here, except that the low inter-connection
bandwidth must be considered in allocating resources to
processes. In addition, the security issues are compounded
by computer separation, for example:

{1) crypto grapnic techniques might be needed to
. secure the transmission,

{(2) some computers might be insecure, and hence
cannot be fully trusted,

(3) a computer might fall into enemy hands and thus
act in a malicious manner.

Fault Tolerance: For critical applications it is essential
that useful computation continues, even in the presence of
hardware faults. Many techniques have been suggested for
providing such fault tolerance, particularly for the Lype
of tasks that are our concern. For example, the SIFT
concept,[16] enables critical tasks to be processed by two
or more processors, provides for a comparison of the result
computed by the replicated processes and performs rapid
reconfiguration of the system on the detection and location
of a fault. We would consider incorporating the SIFT
concept into a multiprocessor configuration. One potential
disadvantage of the SIFT concept is that it is extravagant
in its use of redundancy. This may not be a serious
criticism as the cost of the computer hardware diminishes.
It may also be possible to alleviate this problem by using
redundancy techniques that are more cost effective in
special situations, e.g., error correcting coding for
storage.

Recovery From Application Program Errors: We envisage tnat,
by formally verifying the TACEXEC and by incorporating
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P hardware redundancy into the system, the TACEXEC will be

x invulnerable to "system" failures. Howsver, some of the
application programs may not have been verified, and an
error in on application program could have serious effects

5, for that application (though it would not affect any other
- independent applications). A technique developed at the
iT University of Newcastle, by Brian Randall and Michael

Melliar-Smith, addresses this issue. Briefly an acceptance
test is provided with the application program, which if not
satisfied by a particular invocation causes an alternate
version of the program to be invoked. We would include the
mechanisms for such detection and recovery within the
TACEXEC, and investigate techniques for writing acceptance
tests and alternate programs for tactical programs. The
original recovery concept would have to be extended to
handle asynchronously communicating programs.

* Proof Techniques: The need to produce a complete,
implementable TACEXEC design within the current contract
precluded the allocation of significant effort to
verification of the system. We designed the system so that
it is provable, but the actual development of the
implementation proofs will require significant effort. 1In
particular, there is a need to prove properties relating to
the system's ability to meet the time constraints required
of the applicaton programs, a problem that was only partly
addressed during this current investigation. Also, the
current work is concerned with scheduling for the worst
case. Future work snould consider a distribution for
processing times.

% FExtension of SPECIAL: During the investigation the SPECIAL
specification Language evolved, primarily to express the
behavior of a module that is accessed by asynchronous
processors. It is not clear that the spacification
constructs we proposed are formalizable for proof or are
adequate for expressing general inter-process
communications, Additional effort is needed here that
should be preceded by an investigation of a variety of
system applications, including distributed systems.
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PROCESS COORDINATION

MODULE process_coordination

TYPES

clearance: { INTEGER i | 0 < i AND i <= max_clearance };
category_set:
{ VECTOR_OF BOOLEAN cs | LENGTH(cs) = number_of_categories };
access_level:
STRUCT_OF (clearance security_clearance;

category_set security_categories;

clearance integrity clearance;

category_set integrity_categories);
segment_number: {INTEGER sn | O <= sn AND sn < segments_per_as};
offset: {INTEGER i | 0 <= i AND i < max_seg_sizel;

DEFINITIONS

BOOLEAN read_allowed(access_level subject_al, object_al)
IS subject_al.security_clearance
>z object_al .security_clearance
AND subject_al .integrity_clearance
<= object_al.integrity_clearance
AND(FORALL INTEGER i | 0 < i AND i <= number_of_categories:
( object_al.security_categories(i]
=> subject_al.security_categories(i])
AND( subject_al.integrity_categoriesli]
=> object_al .integrity_categories(i]));
BOOLEAN write_allowed(access_level subject_al, object_al)
IS read_allowed(object_al, subject_al);
access_level seg_access_level(segment s)
IS SOME access_level L | EXISTS address_space as:
EXISTS segment_number sn:
h_as_entry(as, sn, L) = s
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PROCESS COORDINATION

AND h_as_entry_owned(as, sn, L)
= TRUE

AND ~(EXISTS access_level 11 |
read_allowed(l, L1): ]
h_as_entry(as, sn, 1L1) "]
B
= s o
M )
AND n_as_entry_owned(as, s
sn, ]
L1) e
= TRUE); N
e A
EXTERNALREFS o
- o
v 1
FROM virtual_memory: S
address_space, segment: DESIGNATOR; "
INTEGER max_clearance $( the highest clearance) , : ]
- -'
number_of_categories, . -
segments_per_as $(tne number of possible s%lf
segments in an address space), 5*,*
max_seg_size $(the maximum size of a segment); f“;

VFUN n_as_exists(address_space as; access_level L) -> BOOLEAN b; -
VFUN h_as_entry(address_space as; segment_number sn; access_level L) “fjl
-> Segment 3;

VFUN h_as_entry_owned(address_space as; segment_number sn; )
access_level 1) -> BOOLEAN b; - oy om

VFUN h_read(segment s; offset os; access_level 1)

-> INTEGER contents;
OFUN segment_write(segment_number sn; offset os;

.
INTEGER contents) —
faddress_space as; access_level all; , -
41.5
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PROCESS COORDINATION

FUNCTIONS

OFUN P(segment_number sn; offset os)

[address_space as; access_level al];

$( Return if value of s was greater than 0 with value

of s decremeated by 1)
DEFINITIONS

segment s IS h_as_entry(as, sn, al);
EXCEPTIONS

h_as_entry_owned(as, sn, al) = ?;

3 = ? OR seg_access_level(s) = al;

h_read(s, os, seg_access_level(s)) = 7;
DELAY UNTIL h_read(s, os, seg_access_level(s)) > 0;
ASSERTIONS

h_as_exists(as, al);
EFFECTS

EFFECTS_OF

segment_write(sn, os,

h_read(s, os, seg_access_level(s))-1,

as, al);

OFUN V(segment_number sn; offset os)
[address_space as;access_level all;
$( Increment the value of semaphore s)
DEFINITIONS
segment 3 IS n_as_entry(as, sn, al);
EXCEPTIONS
h_as_entry_owned(as, sn, al) = ?;
8 "= ? AND read_allowed(al, seg_access_level(s))
AND ~write_allowed(al, seg_access_level(s));
s "= ? AND read_allowed(al, seg_access_level(s))
AND n_read(s, os, seg_access_level(s)) = ?;
ASSERTIONS
n_as_exists(as, al);
EFFECTS
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L‘ PROCESS COORDINATION

S "= ? AND write_allowed(al, seg_access_level(s))
: AND h_read(s, os, seg_access_level(s)) ~= ?
- => EFFECTS_OF
;‘ segment_write(sn, os,
; n_read(s, os, seg_access_level(s))+1,
as, al);

}

P END_MODULE
\
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USER INPUT/OUTPUT

MODULE user_io

TYPES

clearance: { INTEGER L | 0 < 1 AND i <= max_clearance };
category_set:

{ VECTOR_OF BOOLEZAN cs | LENGTH(cs) = number_of_categories };
access_level:

Lk 240% 4 203 A0D a2 2tk 200 UMD S o —

TR AERT VT AN o e,
B . et ’ N - T
o e tal . . e . e

STRUCT_OF(clearance security_clearaace;
category_set security_categories;
clearance integrity_clearance;

category_set integrity_categories);

vv:. -‘yrA,H1ﬂ~.-_.
Ve .

PARAMETERS

access_level h_device_al (INTEGER dev_ind) $( access Level of each - ;{4*
‘ device); "o

DEFINITIONS

BOOLEAN read_allowed(access_level subject_al, object_al)
IS subject_al.security_clearance
>= object_al .security_clearance
¢ AND subject_al .integrity_clearance i
<= object_al.integrity_clearance
AND(FORALL INTEGER i | 0 < i AND i <= number_of categorles:

( object_al.security_categoriesii] -
¢ => subject_al .security_categories{i]) LA
AND( subject_al.lntegrity_categoriesii] S

=> object_al.integrity_categories(i]));
BOOLEAN write_allowed(access_level subject al, object_al)
IS read_allowed(object_al, subject_al);
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USER INPUT/QUTPUT

EXTERNALREFS

FROM process_primitives:
event: DE3IGNATOR;
OFUN occurrence(event e)

[access_level all] $( Event e has occurred) ;

FROM virtual_memory:
INTEGER max_clearance $( the highest clearance) ,

nuaber_of categories;

FUNCTIONS

VFUN h_device_event(INTEGER dev_ind; access_level al) -> event e;
$( Returns tne event which can occur when device status
changes)
HIDDEN;
INITIALLY

e = 7

VFUN h_inpub(INTEGER dev_ind; access_level al) -> INTEGER data;
$( The current input from the device)
HIDDEN;
INITIALLY
data = 7;

VFUN h_output(INTEGER dev_ind; access_level al) -> INTEGER data;
$( The next output to the device)
HIDDEN;
INITIALLY
data = 7;
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USER INPUT/OQUTPUT

VFUN h_command(INTEGER dev_ind; access_level al)
-> INTEGER command; $( Tne next command for Lhne
device)
HIDDEN;
INITIALLY
command = 7;

VFUN n_status(INTEGER dev_ind; access_level al) -> INTEGER sbabus}
$( The current status of the device)
HIDDEN;
INITIALLY

status = 7;

OFUN set_event(INTEGER dev_ind; esvent e)laccess_level al];
$( when status changes event e may occur)
EXCEPTIONS
~ write_allowed(al, n_device_al(dev_ind));
EFFECTS

'‘n_device_event(dev_ind, h_device_al(dev_ind)) = e;

QVFUN read_device(INTEGER dev_ind)[access_level al]
-> INTEGER data; $( Read data from device)

EXCEPTIONS
% al "= n_device_al(dev_ind);
- n_input(dev_ind, al) = ?2;
.. EFFECTS
T— data = h_input(dev_ind, al);

'n_input(dev_ind, al) = ?;

ff OFUN write_device(INTEGER dev_ind; INTEGER data)laccess_level all;
i! $( Output data to device)
3 EXCEPTIONS

al "= h_device_al(dev_ind);
h_output(dev_ind, al) ~= 7;
EFFECTS
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USER INPUT/OUTPUT

'n_output(dev_ind, al) = data;

OFUN send_command (INTEGER dev_ind; INTEGER command)

[access_level al]; $( Give command to device)
EXCEPTIONS

al "= h_device_al(dev_ind);
h_command (dev_ind, al) == 7;
EFFECTS

'h_command(dev_ind, al) = command;

VFUN receive_status(INTEGER dev_ind)[access_level al]

-> INTEGER status; $( Get the devices status)
EXCEPTIONS

~ read_allowasd(al, h_devize_al(dev_ind));
h_status(dev_ind, al) = ?;

DERIVATION
h_status(dev_ind, al);

OVFUN device_output()[INTEGER dev_ind] -> INTEGER data;

$( Device reads data it is to output)
EXCEPTIONS

h_output(dev_ind, h_device_ al(dev_ind)) = ?;
EFFECTS

data = h_output(dev_ind, h_device_al(dev_ind));
'h_output(dev_ind, h_devize_al(dev_ind)) = 7

OFUN device_input(INTEGER data) [INTEGER dev_ind];

$( Device places input data into input buffer)
EXCEPTIONS

n_input(dev_ind, n_devize_al(dev_ind)) ~= ?;
EFFECTS

'h_input(dev_ind, h_devize_al(dev_ind)) = data;
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t - USER INPUT/OUTPUT

OVFUN device_command() INTEGER dev_ind] -> INTEGER command;
$( Tne device gets a command) ] :
EXCEPTIONS 4 g A

h_command(dev_ind, h_device_al(dev_ind)) = ?; K
EFFECTS

command = h_command(dev_ind, h_device_al(dev_ind)); '

'h_command(dev_ind, n_device_al(dev_ind)) = ?; . 2

OF UN change_status(INTEGER status; BOOLEAN occur)
{INTEGER dev_ind]; $( Reset the status of the
device)
EFPECTS
#ORALL access_level 1 | read_allowed(1l,
h_device_al(dev_ind)):

'h_status(dev_ind, L) = status;

( occur
AND h_device_event(dev_ind, h_device_al(dev_ind)) ~= ?)
=> BFFECTS_OF occurrence(h_device_event(dev_ind, .
h_device_al(dev_ind)
),
h_device_al(dev_ind));
END_MODULE
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PROCESS PRIMITIVES

MODULE process_primitises

TYPES

process, event: DESIGNATOR;
machine_state: DESIGNATOR;
process_type: { iterative, demand, background };
segment_number: { INTEGER sn | 0 <= sn AND sn < segments_per_as };
offset: { INTEGER i | O <= i1 AND i < max_seg_size };
programn_counter: STRUCT_OF(segment_number sn; offset of);
process_info:
STRUCT_OF (process_type type;

INTEGER next_service;

INTEGER interval;

INTEGER duration;

INTEGER dea’line;

INTEGER processing _remaining;

event ev;

BOOLEAN running;

address_space as;

program_counter pc;

machine_state ms);
clearance: { INTEGER i | 0 < 1 AND L <= max_clearance };
category_set:
{ VECTOR_OF BOOLEAN cs ! LENGTH(cs) = number_of_categories };
access_level:
STRUCT_OF (clearance security_clearance;

category_set security_categories;

clearance integrity_clearance;

category_set integrity_categories);
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PROCESS PRIMITIVES

PARAMETERS

INTEGER start_time $( time when system is initialized) ;
program_counter initial_pc $( address of first instruction in
first process);
machine_state initial_ms $( the initial state of logical machine
registers for each new process);

DEFINITIONS

BOOLEAN time_critical_process(process p; access_level 1)
IS n_process_info(p, L).type = iterative
OR h_process_info(p, l).type = demand;

access_level initial_level
IS STRUCT(1,
VECTOR(FOR i FROM 1 TO number_of_categories: FALSE),
max_clearance,
VECTOR(FOR i FROM 1 TO number_of_ categories: TRUE));
BOOLEAN read_allowed(access_level subject_al, object_al)
IS subject_al.security_clearance
>= object_al.security_clearance
AND subject_al.integrity_clearance
<= object_al.integrity_clearance
AND(FORALL INTEGER L | 0 < i AND i <= number_of_categories:

( object_al.security_categories’i]

=> subject_al.security_categories(i])
AND( subject_al.integrity_categories[i]
z=> object_al.integrity categories(il]));
BOOLEAN write_allowed(access_level subject_al, object_al)
IS read_allowed(object_al, subject_al);
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PROCESS PRIMITIVES

EXTERNALREFS

FROM virtual_memory:
address_space: DESIGNATOR;
INTEGER max_clearance, number_of categories, segments_per_as,
max_seg_size;
VFUN h_as_exists(address_space as; access_level al) -> BOOLEAN b;
OFUN get_segment(address_space source_as;
access_level source_al;
segment_number source_sn;
segment_number dest_sn)

[address_space as; access_level all;

ASSERTIONS

FORALL process p; access_level 1 | time_ecritical_process(p, L):
h_process_info(p, L).processing_remaining >= 0;

FUNCTIONS

VFUN h_process_exists(process p; access_level al) -> BOOLEAN b;
$( True if process p exists)
HIDDEN;
INITIALLY
CARDINALITY({ process p | h_process_exists(p,

initial_level)
1

=1
AND(FORALL access_level 1 | 1 "= initial_level:
FORALL process p: h_process_exists(p, 1) ~= TRUE);
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PROCESS PRIMITIVES

VFUN h_process_info(process p; access_level al) -> process_info pi;
$( Returns szheduling iaformation about a given process)
HIDDEN;
INITIALLY
- ot
=(If h_process_exists(p, al)
THEN STRUCT(background, ?, ?, 2?2, 7, ?, 2, ?,
(SOME address_space as |
h_as_exists(as, initial_level)),
initial_pc, tnitial_ms)
ELSE ?);

VFUN h_event_min_period(event e; access_level al)
-> INTEGER min_period;
$( True if the ovent e exists)
HIDDEN;
INITIALLY
FORALL event e:
CARDINALITY({access_level 1 | h_event_min_period(e, 1) = =1})
=1
AND (FORALL access_level 1 | h_event_min_period(e, L) “= -1:
h_event_min_period(e, L) = ?2);

VFUN 1_time() -> INTEGER time; $( Clock time)
HIDDEN;
INITIALLY

time = start_time;

OVFUN create_event(INTEGER min_period)[access _level al] -> event e;
$( Create a new event type)
EXCEPTIONS
min_period <= 0;
EFFECTS
h_event_min_period(e, al) = -1;

'h_event_min_period(e, al) = min_period;
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PROCESS PRIMITIVES

OFUN block()([process p; access_level all;
$( The process running wishes to relinquish the processor)
EXCEPTIONS
~time_critical_process(p, al);
DELAY WITH 'h_process_info(p, al).running = FALSE;
UNTIL h_process_info(p, al).next_service < h_time()
AND n_time()
<= h_process_info(p, al).next_service
+ h_process_info(p, al).interval
- h_process_info(p, al).duration;
EFFECTS
h_process_info(p, al).type = iterative
=> 'h_process_info(p, al).next_service > h_time()
AND 'h_process_info(p, al).next_service
~ h_process_info(p, al).interval
< h_time()
AND(EXISTS INTEGER n:
h_process_info(p, al).next_service
+ n * h_process_info(p, al).interval
= 'n_process_info(p, al).next_service);
h_process_info(p, al).type = demand
=> 'h_process_info(p, al).next_service = 7;
'h_process_info(p, al).processing remaining
= h_process_info(p, al).duration;
'h_process_info(p, al).deadline
= h_process_info(p, al).next_service
+ h_process_info(p, al).interval;

'h_process_info(p, al).running = IRUE;

OfUN tick()[access level all; $( Time passes so increment the
clock)
ASSERTIONS
al = initial_level;
EFFECTS
‘h_time() =z h_time() + 1;
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PROCESS PRIMITIVES

fORALL process pj;access_level 1 |

Cate 20 e e o gD, Canuthic mu ut
TR

time_critical_process(p, al)
AND h_process_info(p, al).running:
If nh_process_info(p, al).processing remaining
< h_process_infa(p, al).deadline - h_time()
THEN 'h_process_info(p, al).processing remaining
= h_process_info(p, al).processing remaining

OR 'h_process_info(p, al).processing remaining

ELSE 'h_process_info(p, al).processing remaining

= h_process_info(p, 1l).processinz_remaining;
OVFUN create_iterative_process(INTEGER int;
INTEGER dur;
1ldrass_space nas;
program_counter npc;
access_level 1)
[access_level all
-> process p;
$( Permit the process p to be scheduled and run as in
iterative process)
EXCEPTIONS
dur < J;
int < dur;
~ write_allowed(al, L);
read_allowed(al, L) AND ~h_as_exists(nas, 1);
RESOURCE_£RROR ;
EFFECTS
h_as_exists(nas, 1)
=> h_process_exists(p, 1) = FALSE
AND 'h_process_exists(p, L) = TRUE
AND 'h_process_info(p, L)
= STRUCT(iterative,
(SOME INFEGER L | h_time() <= i
AND L < n_time() + int),
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PROCESS PRIMITIVES

int, dur, ?, 0, ?, FALSE, nas, npc, initial_ms);

OVFUN create_demand_process(INTEGER dur;
event e;
address_space nas;
program_counter npc;
access_level 1)
[access_level al]
-> process p; $( Permit the process p
to run whenever event e
occurs)
DEFINITIONS
access_level el
IS SOME access_level el | read_allowed(al, el)
AND h_event_min_period(e, el) > 0;
EXCEPTIONS
el = 75
h_event_min_period(e, el) <= dur;
dur < O
~ write_allowed(al, 1);
read_allowed(al, L) AND ~h_as_exists(nas, l);
RESOURCE_ERROR;
EFFECTS
h_as_exists(nas, L)
=> h_process exists(p, L) = FALSE
AND 'h_process_exists(p, L) = TRUE
AND 'h_process_info(p, L)
= STRUCT(demand, ?, h_event_min_period(e, el),
dur, ?, 0, e, FALSE, nas, npc, Lnitial_ms);

OVFUN create_background_process{address_space nas;
program_counter npc;
access_level 1)
[access_level al]
=> process p;

69

et et et o At el s m A VN



" A S SR A ro— d

g ﬁ::N;::i ‘ N
.'n, ¢ N . T . o : -
P A T

—— 'r. ¥

IS

Lo 4

L R

e e

I9ad

PROCESS PRIMITIVES

EXCEPI'IONS
~ write_allowed(al, l);
read_allowed(al, L) AND ~h_as_exists(nas, L);
RESOURCE_ERROR ;
EFFECTS
h_as_exists(nas, L)
=> h_process_exists(p, L) = FALSE
AND 'h_process_exists(p, L) = TRUE
AND 'h_process_info(p, L)
= STRUCT(backzround, ?, ?, 2?2, 2, 2, 2, ?,

nas, npc, initial_ms);

OFUN delete_process{process p; access_level 1)(access_level all;
$( The process p at level 1 no longer should exists)
EXCEPTIONS
~ write_allowed(al, l);
~(read_allowed(al, 1) => h_process_info(p, 1) "= ?);
EFFECTS
'h_process_info(p, L) = %
OFUN occurrence(event e)faccess_level all; $( Wake up processes
waiting for event e)
EXCEPTIONS
~(EXISTS access_level el | read_allowed(al, el):
h_event_min_period(e, el) > 0);
ASSERTIONS
FORALL access_level 1 | write allowed(al, L):
FORALL process p | h_process_info(p, 1).ev = e:
h_process_info(p, L).deadline <= h_time();
EFFECTS
FORALL access_level 1 | write_allowed(al, L):
FORALL process p | h_process_info(p, 1l).ev = e:
'h_process_info(p, l).next_service = h_time();
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PROCESS PRIMITIVES o
OFUN segment_get(process source_p;
segment_number source_sn; S E
access_level source_al; -_'.i
. segment_number dest_sn) 1
':'.: [process p; access_level all; :
: EXCEPTIONS R
read_allowed(al, source_al) -"J
AND h_process_info(source_p, source_al) = 7;
EXCEPT IONS_OF
get_segment(h_process_info(source_p, source_al).as, S
source_al, source_sn, dest_sn, H':
) h_process_info(p, al).as, ‘. ‘ ]
3 al); o
) ASSERTIONS 4
h_process_info(p, al) ~= 2 . 2
EFFECTS .
EFFECTS_OF 1
get_segment (h_process_info(source_p, source_al). as, 7
source_al, source_sn, dest_sn, »
h_process_info(p, al).as,
al); ,
END_MODULE )
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FILE SYSTEM

MODULE file_system

TYPES

clearance: { INTEGER 1 | 0 < i AND i <= max_clearance };
category_set:
{ VECTOR_OF BOOLEAN cs | LENGTH(cs) = number_of categories };
access_level:
STRUCT_Of (clearance security_clearance;

category_set security_categories;

clearance integrity_clearance;

category_set integrity_categories);

segment_number: { INTEGER sn | 0 <= sn AND sn < segments_per as };

offset: { INTEGER i | 0 <= i AND i < max_seg size };
segment_bound: { INTEGER L | 0 <= 1 AND L <= max_seg size };
name: {VECTOR_OF CHAR n } LENGIH(n) <z name_length};
file_address: STRUCT_OF(name nm; INTEGER off);

word: ONE_Of (INTEGER, name, process,

event, wakeup, processor, address_space);

PARAMETERS

INTEGER max_files(access_level 1) $( the most fites at level 1) ,

max_level _size(access_level 1) $( the amount of storage at

level 1);

DEFINITIONS

BOOLEAN read_allowed(access_level subject_al, object_al)
IS subject_al.security_clearance
>= object_al.security_clearance
AND subject_al.integrity_clearance
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FILE SYSTEM

<= object_al.integrity_clearance
AND(FORALL INTEGER L | 0 < i AND { <= number_of_categories:
( object_al.security_categoriesli]
=> subject_al.security_categories(i])
AND( subject_al.integrity_categoriesi{i]
=> object_al.integrity_categories(i]));
BOOLEAN write_allowed (access_level subject_al, object_al)
IS read_allowed(object_al, subject_al);
access_level seg access_level (segment 3)
1S SOME access_level 1 | EXISTS address_space as:
EXISTS segment_number sn:
h_as_entry(as, sn, 1) = s
AND h_as_entry_owned(as, sn, 1)
= TRUE
AND ~(EXISTS access_level 11 |
read_allowed(1l, L1):
h_as_entry(as, sa, L1)
z 8
AND n_as_entry_owned(as,
sn,
11)
= TRUE);
INTEGER segment_size(segment s)
IS CARDINALITY({ offset i | h_read(s, i, seg access_level(s))

“z ? D3
SET_OF access_level read_pame_set{name n; access_level rl, at)
IS { access_level 1 | read_allowed(rl, L)

AND read_allowed(al, 1)
AND h_file_contents(n, L) ~“= ?
AND ~(EXISTS access level 11 |
read_allowed(rl, L1) AND read_allowed(11, i):
h_file_contents(n, L1) == ?) };
SET_OF access_level write_name_set(name n; access_level wl, al)
IS { access_level 1 | write_allowed(wlL, 1)
AND write_allowed(al, L)
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AND n_file_contents(n, L) "= ?
AND ~(EXISTS access_level 11 |
write_allowed(wl, L1) AND write_allowaed(11, L):
h_file_contents(n, 1) ~z . 3
INTEGER level_size(access_level 1)
IS CARDINALITY({ file_address addr ! h_file contents(addr.nm, L)

(addr.off]

"= ? 1

EXTERNALREFS

FROM virtual_memory:

address_space, segment: DESIGNATOR;

INTEGER max_seg size $( the maximum size of a segment) ,
max_clearance $( the highest clearance) ,
number_of_categories,
segments_per_as $( the maximum number of segments .n an

address space),
name_length $(number of characters in a name);

VFUN h_as_exists(address space as; access_level al) -> BOOLEAN b;

VFUN h_read(segment s; offset i; access_levet 1) -> word c;

VFUN h_as_entry(address_space as;

segment_number sn;
access_level 1)
=> segment s;
VFUN h_as_entry_owned(address_space as; segment_number sn;
access_level 1)
-=> BOOLEAN b;
OFUN segment_create(segment_number sn;
segment_bound 1i;
VECTOR_OFf word initial_contents)
[address_space as; access_level all;
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FILE SYSTEM

FROM dispatcher:

event, process, wakeup, processor: DESIGNATOR;

FUNCTIONS

VFUN h_file_contents(name n; access_level 1)
-> VECTOR_OF word contents; $( The contents
of a file)
HIDDEN;
INITIALLY

contents = 7;

OFUN create_file(name n)[access_level all; $( Create a new file)
EXCEPTIONS
h_file_contents(n, al) ~= ?;
CARDINALITY({ name n | h_file_contents(n, al) "= ? })
>z max_files(al);
EFFECTS
'h_file_contents(n, al) = VECTOR();

OFUN delete_file(name n)[access_level all; $( Delete an existing
file)
EXCEPTIONS
h_file_contents(n, al) = ?;
EFFECTS
'h_file_contents(n, al) = 7

OFUN load_file(name n; access_level rl; segment_number sn)
[address_space as; access_level all;
$( Create a new segment with segment number sn with the
contents of file with name r)
DEFINITIONS
access_level 1
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FILE SYSTEM

IS IF CARDINALITY(read_name_set(n, rl, al)) = 1
THEN SOME access_level 1 INSET read_name_set(n, rl,
al)
ELSE ?;
EXCEPTIONS
1 =7
EXCEPTIONS_OF segment_create(sn,
LENGTH(h_file_contents(n, 1)),
VECTOR(), as, al);
ASSERTIONS
h_as_exists(as, al);
EFFECTS
EFFECTS_OFf segment_create(sn,
LENGTH(h_file_contents(n, 1)),
h_file_contents(n, 1), as, al);

OFUN unload_file(name n; access_level wl; segment_number sn)
{address_space as; access_level all;
$( Copy the contents of segment sn into file with name n)
DEFINITIONS
segment s IS h_as_entry(as, sn, al);
access_level 1
IS If CARDINALITY(write_name_set(n, wiL, al)) = 1
THEN SOME access_level 1 INSET write_name_set(n, wl,
al)
ELSE ?;
EXCEPTIONS
h_as_entry_owned(as, sn, al) = 7;
s = ? OR ~read_allowed(al, seg_access_level(s));
“(1=27
=>( read_allowed(al, 1)
=> segment_size(s) + level_size(l)
- LENGTH(h_file_contents(n, 1))
<= max_level_size(1)));
ASSERTIONS
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FILE SYSTEM

h_as_exists(as, al);
EFFECTS
~= 2
AND segment_size(s) + level_size(1l)
- LENGTH(h_file_contents(n, 1))
> max_level_size(1)
=> 'h_file_contents(n, 1)
= VECTOR(FOR i FROM 0 TO segment_size(s) - 1
: h_read(s, i, al));

OFUN append_to_file(name n; access_level wl; segment_number sn)
(address_space as; access_level all;
$(append the contents of a segment to a file with name n)
DEFINITIONS
segment s IS h_as_entry(as, sa, al);
access_level 1
IS IF CARDINALITY(write_name_set(n, wlL, al)) = 1
THEN SOME access_level 1 INSET write_name_set(n, wi,
al)
ELSE 7;
EXCEPTIONS
h_as_entry_owned(as, sn, al) = ?;
s = ? OR “read_allowed(al, seg_access_level(s));
“(1=27
=>( read_allowed(al, 1)
=> segment_size(s) + level_size(1l)
<= max_level_size(1)));
EFFECTS
~e 7
AND segment_size(s) + level_size(1)
> max_level_size(1)
=> *h_file_contents(n, 1)
= VECTOR(FOR {
FROM 0O
TO LENGTH(h_file_contents(n, 1))
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FILE SYSTEM

+ segment_size(s) - 1:
IF 1 < LENGTH(h_file_contents(n, L))
THEN h_file_contents(n, L){i]
ELSE h_read(s,
i-LENGTH(h_file_contents(n, 1)),

al));

END_MODULE
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VIRTUAL MEMORY

MODULE virtual_memory

TIPES

address_space, segment: DESIGNATOR;
clearance: { INTEGER 1 | 0 < i AND i <= max_clearance };
category_set:
{ VECTOR_OF BOOLEAN cs | LENGTH(cs) = number_of_categories };
access_level:
STRUCT_Of (clearance security_clearance;

category_set security_categories;

clearance integrity_clearance;

category_set integrity_categories);
segment_number: {INTEGER sn ! 0 <= sn AND sn < segments per_as };
segment_bound: { INTEGER { | 0 <= 1 AND i <= max_seg size };
offset: { INTEGER i | 0 <= 1 AND i < max_seg_size };
name: {VECTOR_OF CHAR n | LENGTH(n) <= name_length};
word: ONE_OF (INTEGER, name, event, process,

wakeup, processor, address_space);

PARAMETERS

INTEGER max_clearance $( the highest clearance) ,
number_of_categories,
segments_per_as $( the maximum number of segments in an
address space),
max_seg_size,
max_as(access_level al) $( the most address spaces
permitted at a level),
max_size(access_level al) $( the amount of memory that can
be consumed at each level),

initial_as_size $( the size of the initial existing
address space ),
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VIRTUAL MEMORY

name_length $( the number of characters in a name);

VECTOR_OF word initial_segment $( contents of initially

existing segment );
DEFINITIONS

access_level initial_level
IS STRUCT(1,
VECTOR(FOR i FROM 1 TO number_of_categories: FALSE),
max_clearance,
VECTOR(FOR i FROM 1 TO number_of_categories: TRUE));
BOOLEAN read_allowed(access_level subject_al, object_al)
IS subject_al.security_clearance
>= object_al.security_clearance
AND subject_al.integrity_clearance
<= object_al.integrity_clearance
AND(FORALL INTEGER i | O < i AND i <= number_of_ categories:
( object_al.security_categoriesii)
=> subject_al.security_categories(i])
AND( subject_al.integrity_categoriesfi]
=> object_al.integrity_categories(i]));
BOOLEAN write_allowed(access_level subject_al, object_al)
IS read _allowed(object_al, subject_al);
access_level seg_access level(segment S)
IS SOME access_level 1
| EXISTS address_space as; segment_number sn:
h_as_entry(as, sn, 1) = s
" AND h_as_entry_owned(as, sn, ) = TRUE
AND ~(EXISTS access_level 11 | read _allowed(1l, L1):
h_as_entry(as, sn, 11) = s
AND h_as_entry_owned(as, sn, L1) = TRUE);
INTEGER number_as(access_level al)
IS CARDINALITY({address_space as | h_as_exists(as, al)});
INTEGER segment_size(segment s)
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IS CARDINALITY({offset i

{ h_read(s, i, seg access_level(s))™= ? 1)}

INTEGER total_as_size(address_space as; access_level asl)
IS SUM(VECTOR(FOR sn FROM 1 TO segments_per_as - 1
¢ IFf h_as_entry_owned(as, sn, asl)
THEN segment_size(h_as_entry(as, sn, asl))
ELSE 0));
INTEGER total_size(SET_OF address_space sas)
IS IF sas = {}
THEN O
ELSE LET address_space as | as INSET sas

IN total_as_size(as) + total_size(sas DIFF {as});

EXTERNALREFS

FROM dispatcher:

event, process, wakeup, processor: DESIGNATOR;

ASSERTIONS

max_as(initial_level) > O;

segments_per_as > 0;
LENGTH(initial_segment) <= max_seg_size;
initial_as_size <= max_size(initial_level);
LENGTH(initial_segment) <= initial_as_size;

FUNCTIONS

VFUN h_as_exists(address_space as; access_level al) -> BOOLEAN b;
$( True if address space as is known to exist from level
al)
HIDDEN;
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VIRTUAL MEMORY

INITIALLY

b = h_as_used(as, al);

VFUN h_as_used(address_space as; access_level al) -> BOOLEAN b;
$( True if address space as has ever existed)
HIDDEN;
INITIALLY
CARDINALITY({address space as |
h_as_used(as, initial_level)})
=1
AND (FORALL address_space as;
access_level al | al “= initial_level:

~“h_as_used(as, al));

VFUN h_as_size(address_space as; access_level al) -> INTEGER i;
$( Number of memory words in address space as)
HIDDEN;
INITIALLY
i = (IFf h_as_used(as, at)
THEN initial_as_size
ELSE 7);

VFUN h_as_entry(address_space as;
segment_number sn;
access_level al)
-> segment 8; $( Returns the segment with segment
number sn in address space as)
HIDDEN;
INITIALLY
If h_as used(as, al) AND sn = 0
THEN h_seg_used(s)
ELSE s = 7;
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VIRTUAL MEMORY

VFUN h_as_entry_owned(address_space as;
segment_number sn;
access_level al)
-> BOOLEAN b; $( True if segment owned by
address space as)
HIDDEN;
INITTALLY
b = (IF h_as_used(as, al) AND sn = O THEN TRUE EISE ?);

VFUN h_seg _used(segment s) -> BOOLEAN b; $( True if segment s has
ever existed)
HIDDEN;
INITIALLY
CARDINALITY({segment s | h_seg _used(s)}) = 1;

VFUN h_read(segment s; offset i; access level al) -> word c;
$( Returns contents of a word of a segment s)
HIDDEN;
INITIALLY
¢ = (IF h_seg used(s) AND read_allowed(al, initial_level)
THEN initial_segment[i]
ELSE ?)3

OVFUN create_address_space(INTEGER as_size; access_level new_al)
[access_level all
-> address_space new_as;
$( Creates a new address space at access level new_al
with size as_size)
EXCEPTIONS
~ write_allowed(al, new_al);
read_allowed(al, new_al)
AND number_as(new_al) >= max_as(new_al);
read_allowed(al, new_al)
AND total_size({address_space as | h_as_exists(as, new_al)})

83

A e A Bt i3 e e ] i . R UPU JUUE, S

2




VIRTUAL MEMORY

+ as_size > max_size(new_al);
EFFECTS
h_as_used(new_as, new_al) = FALSE;
'h_as_used(new_as, new_al) = TRUE;
( number_as(new_al) < max_as(new_al)
AND total_size({address_space as | h_as_exists(as, new_al)l)
+ as_size <= max_size(new_al))
=> 'h_as_exists(new_as, new_al) = TRUE

AND 'h_as_size(new_as, new_al) = as_size;

OFUN delete_address_space(address_space old_as; access_level asl)
[access_level all;
$( Deletes the address space as at level asl)
EXCEPTIONS
~write_allowed(al, asl);
read_allowed(al, asl) AND ~h_as_exists(old_as, al);
EFFECTS
h_as_exists(old_as, asl)
=> 'h_as_exists(old_as, asl) = FPALSE
AND (FORALL segment_number sn |
h_as_entry _owned(old_as, sn, asl) "= ?:
EFFECTS_OF segment_delete(sn, old_as, asl));

OFUN create_segment(address_space as;
access_level asl;
segment_number sn;
segment_bound i;
VECTOR_OF word initial_contents)
(access_level all; $( Creates a segment with
segment number sn in
address space as)
EXCEPTIONS
i < 0;
“write_allowed(al, asl);
read_allowed(al, asl) AND h_as_entry_owned(as, sn, asl) ~= 7;
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read_allowed(al, asl)

AND total_as_size(as, asl) + i > h_as_size(as, asl);
EFFECTS

b, . 0 L

h_as_entry_owned(as, sn, asl) = ?

AND total_as_size(as, asl) + i <= h_as_size(as, asl)
=>(EXISTS segment s:
h_seg_used(s) = FALSE AND 'h_seg used(s) = TRUE
AND 'h_as_entry_owned(as, sn, asl) = TRUE
AND (FORALL access_level 1 | read_allowed(l, asl):
'h_as_entry(as, sn, 1) = s
AND (FORALL offset j | 0 <= J AND J < i:
'h_read(s, j, 1)
= (IF initial_contents[j] = ?
THEN O
ELSE initial_contents[ j1))));

r ¢ ¥

;

OFUN delete_segment(address_space as; access_level asl;
segment_number sn) A
[access_level al]; $( Delete segment sn) vy
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EXCEPTIONS
] “write_allowed(al, asl);
read_allowed(al, asl)
AND h_as_entry_owned(as, sn, al)
EFFECTS

h_as_entry_owned(as, sn, asl) ~= ?
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=> 'h_as_entry_owned(as, sn, asl) Lo
AND ‘ .ﬁ
(h_as_entry_owned(as, sn, asl) RN
=> (FORALL access_level 1 | read_allowed(1l, asl): S
'h_as_entry(as, sn, asl) = ? R

AND (FORALL offset 1: S
'h_read(h_as_entry(as, sn, asl), i, L) = ?)));
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VFUN segment_read(segment_number sn; offset i)
[address_space as; access_level at)
-=> word c; $( Returns contents of word i of
segment sn)
EXCEPTIONS
h_as_entry_owned(as, sa, al) = ?;
h_as_entry(as, sn, al) = 7
h_read(h_as_entry(as, sn, al), i, al) = ?;
ASSERTIONS
h_as_exists(as, al);
DERIVATION

h_read(h_as_entry(as, sn, al), i, al);

OFUN segment_write(segment_number sn; offset i; word c)
[address_space as; access_level al]l;
$( Write data ¢ into a word i of segment sn)
DEFINITIONS
segment s IS SOME segment s1 | (EXISTS access_level 1:
h_as_entry(as, sn, L) = s1);
EXCEPT IONS
h_as_entry_owned(as, sn, al) = 7}
s "= ? AND read_allowed(al, seg_access_level(s))
AND h_read(s, i, seg _access_level(s)) = ?;
8 "= ? AND read_allowed(al, seg_access_level(s))
AND ~write_allowed(al, seg_access_level(s));
ASSERTIONS
h_as_exists(as, al);
EFFECTS
i;j 8 "= ? AND h_read(s, i, seg access_level(s)) "z ?

g AND write_allowed(al, seg_access_ level(s))
- z> (FORALL access_level 1 |
read_allowed(1, seg_access_level(s)):
'h_read(s, i, 1) = ¢);
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VIRTUAL MEMORY

OFUN get_segment(address_space source_as;
access_level asi;
segment_number source_sn;
segment_number dest_sn)
[address_space as; access level all;
$( Mllow the segment in address space source_as with
number source sn to be accessed in the current address
space with number dest_sn)
EXCEPTIONS
read_allowed(al, asl) AND ~“h_as_exists(source_as, asl);
read_allowed(al, asl)
AND h_as_entry_owned(source_as, source_sn, asl) = ?;
h_as_entry(as, dest_sn, al) "= 7;
ASSERTIONS
h_as_exists(as, al);
EFFECTS
FORALL access_level 1
! read_allowed(1, asl) AND read_allowed(l, al):
'h_as_entry(as, dest_sn, 1)
= h_as_entry(source_as, source_sn, asl);
'h_as_entry_owned(as, dest_sn, al) = FALSE;

OFUN segment_create(segment_number sn;
segment_bound i}
VECTOR_OF INTEGER initial_contents)
[address_space as; access_level all;
EXCEPTIONS
EXCEPTIONS_OF create_segment(as, al, sa, i,
initial_contents, al);
ASSERTIONS
h_as_exists(as, al);
EFFECTS
EFFECTS_OF create_segment(as, al, sn, i,
initial_contents, al);
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VIRTUAL MEMORY —'?

b OFUN segment_del ete(segment_number sn)

PR,

{address_space as; access_level all; y
L EXCEPTIONS LA
b EXCEPTIONS_OF delete_segment(as, al, sn, al);
ASSERTIONS
h_as_exists(as, al);
EFFECTS

EFFECTS_OF delete_segment(as, al, sn, al);
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SYSTEM INPUT/OUTPUT

MODULE system_io

PARAMETERS

BOOLEAN h_device_exists(INTEGER dev_ind) $( true for existing

1/0 device);

EXTERNALREFS

FROM dispatcher:
event: DESIGNATOR;

OFUN occurrence{event e) $( Event e has occurred)

FUNCTIONS

VFUN h_device_event(INTEGER dev_ind) -> event e;
$( Returns the event which can occur when device status
changes)
HIDDEN;
INITIALLY

e =17

VFUN h_input(INTEGER dev_ind) -> INTEGER data;
$( The current input from the device)
HIDDEN;
INITIALLY
data = 7;
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SYSTEM INPUT/OUTPUT

VFUN h_output (INTEGER dev_ind) -> INTEGER data;
$( The next output to the device)
HIDDEN;
INITIALLY
data = 7;

VFUN h_command(INTEGER dev_ind) -> INTEGER command;
$( The next command for the device)
HIDDEN;
INITIALLY
command = ?;

VFUN h_status(INTEGER dev_ind) -> INTEGER status;
$( The current status of the device)
HIDDEN;
INITIALLY
status = 7;

OFUN set_event(INTEGER dev_ind; event e);
$( When status changes event e may occur)
EXCEPTIONS
~“h_device_exists(dev_ind);
EFFECTS
'h_device_event(dev_ind) = e;

OVFUN read_device(INTEGER dev_ind) -> INTEGER data;
$( Read data from .device)
EXCEPTIONS
~“h_device_exists(dev_ind);
h_input(dev_ind) = 7;
EFFECTS
data = h_input(dev_ind);
‘h_input(dev_ind) = 7;




-i SYSTEM INPUT/OUTPUT

OFUN write_device(INTEGER dev_ind; INTEGER data);
$( Output data to device)
EXCEPTIONS
~“h_device_exists(dev_ind);
h_output(dev_ind) ~= 7;
EFFECTS
'h_output(dev_ind) = data;

- OfUN send_command(INTEGER dev_ind; INTEGER command);
.L $( Give command to device)
~ EXCEPTIONS
tf:" ~“h_device_exists(dev_ind);
¥ h_command(dev_ind) ~= 7
p EFFECTS
'h_command(dev_ind) = command;
L.

VFUN receive_status(INTEGER dev_ind) -> INTEGER status;

$( Get the devices status)
EXCEPTIONS

“h_device _exists(dev_ind);
h_status(dev_ind) = 7;

DERIVATION . "j
h_status(dev_ind); i.
p )
;jﬂ OVFUN device_output()[INTEGER dev_ind] -> INTEGER data; S
E $( Device reads data it is to output) :._._f:,’
i EXCEPTIONS e
1
- h_output(dev_ind) = ?; -
N EFFECTS Kk
L data = h_output(dev_ind); g
'h_output(dev_i = 7 a A
: . h_output(dev_ind) = ?; '*“11

_ OFUN device_input(INTEGER data) [INTEGER dev_ind];
E . $( Device places input data into input buffe.) R
h EXCEPTIONS o
5 e
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SYSTEM INPUT/OUTPUT

h_input(dev_ind) ~= 73
EFFECTS
'h_input(dev_ind) = data;

OVFUN device_command() [INTEGER dev_ind] -> INTEGER command;
$( The device gets a command)
EXCEPTIONS
h_command(dev_ind) = 7;
EFFECTS
command = h_command( dev_ind);
'h_command(dev_ind) = ?;

OFUN change_status(INTEGER status; BOOLEAN occur)
[INTEGER dev_ind]; $( Reset the status of the
device)
EFFECTS
'h_status(dev_ind) = status;
( occur AND h_device_event(dev_ind) ~= ?)
=> EFFECTS_OF occurrence(h_devine_event(dev_ind));

END_MODULE
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DISPATCHER

MODULE dispatcher

TYPES

process, event, wakeup, processor: DESIGNATOR;
machine_state: DESIGNATOR;
program_counter: INTEGER;
process_type: { iterative, demand, background };
process_info:
STRUCT_OF (process_type type;

INTEGER next_service;

INTEGER interval;

INTEGER duration;

INTEGER processing_remaining;

event ev;

wakeup wk;

program_counter pc;

machine_state ms);

PARAMETERS

INTEGER start_time $( time when system is initialized) ;
program_counter initial_pc $( the address of the first instruction
of the initial process);
machine_state initial_ms $( the initial register contents of the
initial process);
BOOLEAN processor_exists(processor pr) $( true for all processors
on the system);

INTEGER max_1iterative $( the marimum number of iterative processes),
max__demand $( the maximum number of demand processes),
max__background $( the maximum number of background procs);
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o DISPATCHER

DEFINITIONS

BOOLEAN time_critical_process(process p)

: IS h_process_info(p).type = iterative
{fi OR h_process_info(p).type = demand;
?iz BOOLEAN process_ready(process p) $( TRUE if process p is ready to
H run)
- IS ( time_critical_process(p)
=> h_process_info(p).next_service <= h_time())
_" AND ~(EXISTS processor pr: n_running(pr) = p)
h AND ~(p INSET h_waiting_procs());
INTEGER proc_priority(process p} $( the scheduling priority of

1

process p)

A
yeaend

ISIFp = ?
THEN O
ELSE IFf time_critical_process(p)

THEN IFf h_process_info(p).processing remaining < O

THEN 2
ELSE 3 + CARDINALITY(
{INTEGER 1 |
EXISTS process p1 |
time_critical_process(p1):
i = h_process_info(p1).interval
AND L > h_process_info(p).interval}l
)
ELSE 1;

VECTOR_OF process ready_processes $( a List of all ready processes
in decreasing order of priority)
IS SOME VECTOR_OF process rq |
(FORALL process p | process_ready(p):
EXISTS INTEGER i: rq(i] = p)
AND (FORALL INTEGER 1 | O < i1 AND { <= LENGTH(rq):
process_ready(rq(1]))
AND (FORALL INTEGER i | 0 < i AND i <= LENGTH(rq):
FORALL INTEGER j | 0 < § AND J <= LENGTH(rq):
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( rqli] = rql 3] => 1 = j)
AND (proc_priority(rq{il) > proc_priority(rql j])
2> 1 < §));

VECTOR_OF processor preemptable_processors
$( a list of all processors in increasing order of the

priority of the processes running on them)
IS SOME VECTOR_OF processor pq |
(FORALL processor pr | processor_exists(pr):
EXISTS INTEGER i: pqli] = pr)
AND (FORALL INTEGER i | O < i AND i <= LENGTH(pq): SN
processor_exists(pqlil)) —~g4

B 7 SRR RR”. TR
- R s 6 -
L R A BRI

AND (FORALL INTEGER i | O < i AND i <= LENGTH(pq): ‘]
FORALL INTEGER j | 0 < j AND j <= LENGIH(pq): B
: (pafi] = pqlJ] => 1 = J)
;.'." AND ( proc_priority(h_running(pqlil))
" < proc_priority(h_running(pql j1))
= 1<)
REAL processor_utilization(SET_OF process sp)
IS IF sp = {}
THEN 0.0

ELSE LET process p | p INSET sp
IN h_process_info(p).duration
/ (1.0 ®* h_process_info(p).interval)

: S
5 + processor_utilization(sp DIFF {p}); SR
R
:_-; REAL ln_2 IS 0.693 $( natural logarithm of 2 );
R "., :.]
s RS
4 '.«
§ FUNCTIONS -
< .
VFUN h_process_exists(process p) -> BOOLEAN b; $( True if process o
;i p exists) e
- HIDDEN; R
. INITIALLY '
. CARDINALITY({ process p | h_process_exists(p) }) = 1;
by .
¢
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DISPATCHER

VFUN h_process_info(process p) -> process_info pi;
$( Returns scheduling information about a given process)
HIDDEN;
INITIALLY
pi
=(IF h_process_exists(p)
THEN STRUCT(background, ?, ?, ?, ?, ?, ?,

initial_pc, initial_ms)
ELSE ?);
VFUN h_running(processor pr) -> process p;

$( Returns the process running on the given processor, or
returns ? if the processor is idle)
HIDDEN;
Fe INITIALLY
. CARDINALITY({ processor pr |
] h_process_exists(h_running(pr)) })
3 : =1
F AND( ~ h_process_exists(h_running(pr))
E'\ 2> h_running(pr) = ?);
[ VFUN h_waiting procs() -> SET_OF process sp;
E $( 1ist of all waiting processes )
l HIDDEN;
g INITIALLY
= = (};
o
& VFUN h_event_exists(event e) -> BOOLEAN b; $( True if the event e
3‘ exists)
HIDDEN;
s INITIALLY
r b = FALSE;
.
;-
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DISPATCHER

VFUN h_wakeup_exists{wakeup w) -> BOOLEAN b;
$( true if wakeup w has been created )
HIDDEN;
INITIALLY
b = FALSE;

VFUN h_time() -> INTEGER time; $( Clock time)
HIDDEN;
INITIALLY

time = start_time;

OVFUN create_process_identifier() -> process p; $( Creates a new

PR e i

——y - iR Tt gt T
W'--1-:v-.—-v,v.—v.v.v_1\-. S W W TR T R TR TR T TR TN LA e

token for a R
5 process) ]
| o] i A
EFFECTS v

s oo
t_i ~ h_process_exists(p);: L
4 'h process_exists(p); o '
= 2

OVFUN create_event() -> event e; $( Create a new event type) v d

EFFECTS i

~ h_event_exists(e);

'h_event_exists(e); . .}

_A e
- OVFUN create_wakeup() -> wakeup w; T
5 $( creates a new wakeup type ) ,
5 EFFECTS T
: gl
. ~h_wakeup_exists(w); S
'h_wakeup_exists(w); '-‘i’.'jj;;'.j

3 OFUN block(BOOLEAN awaiting wakeup)[processor prl; '_}
- $( The process running on processor pr wishes _._..1
E: to relinquish the processor) - ':f:":]
DEFINITIONS o

process p IS h_running(pr); ‘_j.’;4

EXCEPTIONS —

ii
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DISPATCHER

awaiting wakeup AND h_process_info(p).wk = 73
~time_critical_process(p) AND ~awaiting wakeup;
EFFECTS
'h_running(pr) = ready_processes{1];
IF awaiting wakeup
THEN 'h_waiting procs() = h_waiting procs() UNION {p}
ELSE
(h_process_info(p).type = iterative
=> 'h_process_info(p).next_service > h_time()
AND 'h_process _info(p).next_service
- h_process_info(p).interval
< h_time()
AND (EXISTS INTEGER n:
h_process_info(p) .next_service
+ n ® h process_info(p).interval
= 'h_process_info(p).next_service))
AND (h_process_info(p).type = demand
=> 'h_process_info(p) .next_service = ?)
AND ('h_process_info(p).processing remaining
= h_process_info(p).duration);

OFUN tick(); $( Time passes so increment the clock)
EFFECTS
FORALL INTEGER i |
0<1
AND i <= MIN({ LENGTH(ready_processes),
LENGTH(preemptable_processors) })
AND proc_priority(ready_processes[i])
> proc_priority(h_running(preemptable_processors(i])):
'h_running(preemptable_processors{i]) = ready_processes(i];
'h_time() = h_time() + 1;
FORALL processor pr |

) processor_exists(pr)

: AND time_critical_process(h_running(pr)):

t' 'h_process_info(h_running(pr)).processing_remaining
3 98
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DISPATCHER

= h_process_info(h_running(pr)).processing_remaining - 1;
FORALL process p | p INSET h_waiting procs()
AND time_critical_process(p)
AND proc_priority(p)
> proc_priority(
h_running(
preemptable_processors’1])):
'h_process_info(p).processing_remaining
= h_process_info(p).processing remaining - 1;

OFUN schedule_iterative_process(process p;

INTEGER int;
INTEGER dur;
INTEGER begin_time;
program_counter p_c;
machine_state m_s);
$( Permit the process p to be scheduled and run as an
iterative pro-ess)

EXCEPTIONS

~h_process_exists(p);
int < dur;

dur < 03

begin_time < h_time();

CARDINALITY({process p | h_process_info(p).type = iterative})
>= max_iterative;

ASSERTIONS

processor_utilization({process p | time_critical_process(p)})
+ Gur / (1.0 ® int)

< 1n_2 * CARDINALITY({processor pr | processor_exists(pr)});

EFFECTS

*h_process_info(p)
z STRUCT(iterative, begin_time, int, dur, dur, ?,
?, p_c, m_3);
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DISPATCHER

OFUN schedule_demand_process(process p;
INTEGER min_period;
INTEGER dur;
event e;
program_counter p_c;
machine_state m_s);
$( Permit the process p to run whenever event e occurs)
EXCEPTIONS
“h_process_exists(p);
min_period < dur;
dur < 03
CARDINALITY({process p | h_process_info(p).type = demand})
>= max_demand;
ASSERTIONS
processor_utilization({process p | time_critical_process(p)})
+ dur /7 (1.0 * min_period)
< 1n_2 * CARDINALITY({processor pr | processor_exists(pr)});
EFFECTS
th_process_info(p)
= STRUCT(demand, ?, min_period, dur, dur, e, ?, p_c, m_s);

OFUN schedule_background_process(process p; program_counter p_c;
machine_state m_s);
$( Permit process p to run whenever there is time
available)
EXCEPTIONS
“h_process_exists(p);
CARDINALITY({process p | h_process_info(p).type = background})
>= max_background;
EFFECTS
'h_process_info(p)
= STRUCT(background, ?, ?, ?, 2?2, ?, ?, pP_C, m_8);
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DISPATCHER

OVFUN stop_process(process p)
~> STRUCT_OF (program_counter pc; machine_state ms) state;
$(stop scheduling the given process p)
EXCEPTIONS
“h_process_exists(p);
h_process_info(p) = 7
EFFECTS
'h_process_info(p) = 7;
state = STRUCT(h_process_info(p).pc, h_process_info(p).ms);

OFUN occurrence(event e); $( Wake up processes waiting for event e)
EFFECTS

FORALL process p | h_process_info(p).ev = e:
'h_process_info(p) .next_service = h_time();

OFUN wait(wakeup w)[processor prl;

$( tell system that this process wants to wait for wakeup w )
EXCEPTIONS

~h_wakeup_existsa(w);
EFFECTS

'h_process_info(h_running(pr)).wk = w3

OFUN continue()[processor prl;

$( this process no longer wants to wait )
EFFECTS

'h_process_info(h_running(pr)).wk = 72

OFUN notify(wakeup w);

$( wake up all processes waiting for wakeup w )
EXCEPTIONS

“h_wakeup_exists(w);
EFFECTS

LET process p | h_process_info(p).wk = w
INp "= ? => h_process_info(p).wk = ?
AND 'nh_waiting proecs()
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DISPATCHER

h_waiting procs() DIFF {p}

END_MODULE

FUPPNA TR
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Appendix B

Specifications of Message System

MODULE message_systen
$( provides a primitive system for the transmittal of
messages {vectors of words) between named users. The
transmission adheres to the multilevel security rules)

TYPES

user_id: DESIGNATOR;
clearance: { INTEGER 1 | 0 < i AND i <= max_clearance };
category_setb:
{ VECTOR_OF BOOLEAN cs | LENGTH(ecs) = number_of categories };
access_level:
STRUCT_OF(clearance security_clearance;

category_set security_categories;

clearance integrity_clearance;

category_set integrity_categories);
segment_number: { INTEGER sn | 0 <= sn AND sn <= max_seg_size };
offset: { INTZGER L | 0 <= i AND i <= max_seg_size };
name: { VECTOR_OF CHAR n | LENGTH(n) <= name_length 1};
msg_word: ONE_OF (INTEGER, name);

PARAMETERS

INTEGER max_clearance $( the highest clearance) ,
number_of_categories,
name_length $( the number of characters in a name) ,
max_users({access_level al) $( the most users permitted at a
level),
max_msg_size(access_level al) $( the amount of memory that
can be consumed by a user at
a level for messages),
max_messages(access_level al) $( maximum number of messages
that a user at given Level
can receive);
user_id sec_officer $( designator for security officer) ;
name name_sec_officer $( name for security officer) ;

DEFINITIONS
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BOOLEAN read_allowed(access_level subject_al, object_al)

1S subject_al .security_clearance
>= object_al .security_clearance
AND subject_al.integrity_clearance
{= object_al .integrity_clearance
AND(FORALL INTEGER { | 0 < i AND i <= number_of_categories:
( object_al.security categoriesii]
=> subject_al .security_categories(i])
AND( subject_al.integrity_categories(i]
=> object_al.integrity_categories(i]));
BOOLEAN write_allowed(access level subject_al, object_al)
IS read_allowed(object_al, subject_al);
BOOLEAN authorized_level(user_id usid; access_level al)
IS EXISTS name n; access_level all | read_allowed(all, al):
user_exists(usid, n, at1);
access_level al0
IS STRUCT(1,
VECTOR(FOR &+ FROM 1 TO number_of categories: FALSE),
maxX_clearance,

VECTOR(FOR i FROM 1 TO number_of_categories: TRUE))
$( the lowest access level);

EXTERNALREFS

FROM virtual_memory:

INTEGER max_seg_size;

address_space, segment: DESIGNATOR;

VFUN h_as_entry_owned(address_space as;

segment_number sn;
access_level al)
-> BOOLEAN b;

VFUN n_as_entry(address_space as;
segment_number sn;
access_level al)

-> segment s;
VFUN h_read(segment s; offset i; access_level al) -> msg_word c;

ASSERTIONS

FORALL access_level al: max_users(al) > 0;

FUNCTIONS

VFUN user_exists(user_id usid; name n; access_level al)

-> BOOLEAN b; $( True if user with id and name
exists at level al)
HIDDEN;
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INITIALLY
(FORALL access level at:
user_exists(sec_officer, name_sec_officer, al))
AND(FORALL user_id usidl ~= sec_officer;
name n1 "= name_sec_officer;
access_level alil:
user_exists(usidi, ni1, al1) = ?);

VFUN user_ever_existed(user_id usid; access_level al) -> BOOLEAN b;
$( TRUE if a user ever existed at a given level)
HIDDEN;
INITIALLY
(FORALL access_level al:
user_ever_existed(sec_officer, al))
AND(FORALL user_id usidl ~= sec_officer; access_level al:
user_ever_existed(usidl, al) = ?);

VFUN msg_contents(user_id usid; access_level al; INTEGER i)
=> VECTOR_OF msg word mw;
$( contents of the i-th méssage sent to user usid at
level al. The message is a vector of msg-word)
HIDDEN;
INITIALLY
mw = ?;

-
—

OFUN create_user(name n)[user_id usid; access_level all;
$( invoked by the security officer, presenting the proper
user_id, to create a new user with name n, who can

operate at all levels not exé%eding al)
EXCEPTIONS

not_securi.y_officer: usid “= sec_officer;
too_many_users: EXISTS access_level all | read_allowed(al,)
al1):
CARDINALITY({ name n1 |
EXISTS user_id usidl: user_exists(usidl, n1, al1) })
>z max_users(all1);
duplicate_name: EXISTS user_id usidi:
user_exists(usidl, n, al0);
EFFECTS
EXISTS user_id usidil:
FORALL access_level all | read_allowed(al, al1):
user_ever_existed(usidl, al1) = ?
AND 'user_ever_existed(usidi, al1) = TRUE
AND 'user_exists(usidi, n, al1) = TRUE;

OFUN delete_user(name n1){user_id usid]l;
$( invoked by the security officer to delete a user n,
including all of his mailboxes at all levels)
EXCEPTIONS
not_security_officer: usid ~= sec_officer;
no_user: FORALL access level al; user_id usidil:
user_exists(usidil, n1, al) = ?;
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EFFECTS

LET user_id usidl | EXISTS access_levei 2l:
user_exists(usicdi, n1, al)
IN FORALL access_level alil:
‘user_ _exists(usidt, n1, al1) = 2

OFUN snd_msg(segment_number sn; name n; access_level all)
[user_id usid; address_space as; access_level all;
$( called by a user operating at al in address space as
to send a message to user n at all. The message is the
contents of segment sn)
DEFINITIONS
user_id usid3
IS SOME user_id usid2 | user_exists(usid2, n, al);
INTEGER m
IS MAX({ INTEGER j | j ~= ?
AND msg_contents(usid3, al, j) "= ? } );
segment s IS SOME segment s1 | h_as_entry(as, sa, al) = s1;
EXCEPTIONS
~ authorized_level(usid, at);
~ write_allowed(al, al1);
h_as_entry_owned(as, sn, al) = 73
h_as_entry(as, sn, al) = 7;
read_al lowed(al, all)
AND(FORALL user_id usid2: user_exists(usid2, n, all) = ?);
read_allowed(al, all)
AND CARDINALITY({ INTEGER i | msg contents(usid3, at, i)
"= ?1})
>= max_messages(al);
read_allowed(al, al1)
AND (SUM(VECTOR(FOR i FROM 1 TO m
: LENGTH(msg_contents(usid3, al, 1)))))
>= max_msg_size(al);
EFFECTS
(EXISTS user_id usidi: user_exists(usidl, n, all))
AND( CARDINALITY({ INTEGER i | msg_contents(usid3, al, i)

"= 7}
>z max_messages(al))
AND (SUM(VECTOR(FOR i FROM 1 TO m
: LENGTH(msg _contents(usid3, al, i)))))
>z max_msg size(al)
=> 'msg_contents(usid3, al, m + 1)
= VECTOR(FOR 1
FROM 1
TO MAX({ INTEGER j | h_read(s, j, al) "= ? })
: h_read(s, i, al));

VFUN read_msg(INTEGER i)[user_id usid; access_level at]
-> VECTOR_OF msg _word mw; $( allows a user to read
the i-th message in his

mail box at al)
EXCEPTIONS
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user_is_deleted: FORALL name n: .
user_exists(usid, n, al) = 72 .
no_message: msg_contents(usid, al, i) = 7; o
DERIVATION "
msg _contents{usid, al, i); "
OFUN delete_msg(INTEGER i)[user_id usid; access_level al]l;
$( allows a user to delete the i-th message in his mail
box at al) e
EXCEPTIONS -3
user_is_deleted: FORALL name n: 4
user_exists(usid, n, al) = 7 ]
no_message: msg_contents(usid, al, i) = ?;
EFFECTS
FORALL INTEGER j: .
'msg_contents(usid, al, j) A
=(IF J INSET { 0 .. i - 1} 4
: THEN msg_contents(usid, al, j) T
ELSE msg_contents(usid, al, j + 1)); L
END_MODULE
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Appendix C

MULTILEVEL SECURITY RULES

1. General model

A system consists of a collection of operations or functions. Each
function may be invoked by a user of the system (actually the function
is invoked as part of a program running on beha'f of a user). When
invoked, a function may take a set of arguments. A function together
with a particular set of arguments is termed a functjon reference. When
a function reference is invoked, it can cause the state of the systeam to
change and/or return information to its invoker. The set of all
function references of a system is called F and some member of this set
is denoted by f.

We also define a set of security and integrity levels L. The
security and integrity levels L are partially ordered by the relation
""", Multilevel security involving classifications and categories is
but one example of 1 partial ordering of security and integrity levels,
so we will be dealing here with a more general case. There are
functions K and I whose domain is F and whose range is L. The functions
K and I return respectively the security and integrity levels of their
argument. A process is assigned a security level and an integrity level
for its lifetime and may only invoke function references at these
levels. (Note that a user may have several processes operating on his
behal f simultaneously, and may therefore operate at several security and
integrity levels.)

Finally, we introduce the relation "-->" on function references.
We say that

f1—->f2

(read as f, transmits information to f5) if there is any possibility
that the information returned by an invocation of f2 could have been in
any way effected by a prior invocation of f1. In other words, there is
some transmission of information from f1 to f5.

The definition of multilevel security can now be stated simply.
For any f1 and f2 in F:

f1-->f'2 ==) K(f1) <= K(fz) AND I(f1) >= I(fz) (P1)

This simply states that if there is any possibility of information
transmission between two function references, then the transmiitting
function reference must have a security level less than or equal to the
that of receiving function reference, and the receiving function
reference must have an integrity level less than or equal to that of the
transmitting function reference.
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In other words, information can only flow upward in security or
remain at the same Level. An alternative definition is given in [3].
Similarly, information can only flow downward in integrity or remain at
the same level.

Unfortunately, the abstract nature of this definition makes it
difficult to relate to constructs used in expressing system designs.

This gap can be bridged by formulating a slightly more restrictive model
in less abstract terms.

2.  Restricted Model

Each state variable v contains some of the state information of the
system. The state variables together completely describe the state of
the system. The value of each state variable may be modified by
invocation of some function reference. Each state variable is assigned
a security level and an integrity level which is determined by extending
the functions K and I to apply to state variables as well as function
references, therefore, K(v) is the security level of state variable
and I(v) is the integrity level of state variable v. The relation -=>
relates two state variables such that

V1 —§> V2

means that an invocation of function reference f may cause the value of
vy to change in a manner dependent upon the previous value of v,. In
other words there is an information flow from v, to v, caused by the

invogati <« »f f. Two predicates must also be defined: the prefix form
of -=>

-§> v

means that an invocation of the function reference f may cause the value
of state variable v to change; the postfix form

v —§>

means that the value returned by function reference f is dependent on
the prior value of state variable v. Note that for any f,, Vi and \ZY

f - f
V1 -=D V2 22D == VZ

A multilevel secure system may now be redefined. For any function
reference f and state variables v, vy, and v,

B2
v -I> 22> K(v) <= K(f) AND I(v) >= I(f) (P2a)
vy “I> vy 22> K(vq) <= K(vy) AND I(vq) >= I(v,) (P2b)
Sy v oz K(E) <= K(v) AND I(f) >= I(v) (P2c)
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Thesa properties assure that information flow is always upward in
security level, downward in integrity level, or remains at the same
security or integrity level. Loosely speaking, the arrow --> always
points upward in security level and downward in integrity level. P2a
states that the value returned by an invocation of a function reference
at some security and integrity levels contains information from state
variables at only lLower or equal security levels or higher or equal
integrity levels. P2b assures that when information is transferred from
one state variable to another by some invocation of a function
reference, that the recipient variable is at a higher or equal security
Level or lower or equal integrity level than the originator variable.
P2c assures that the value of a state variable may be changed by
invocation of a function reference whose security level is less than or
equal to or whose integrity lLevel is greater than or equal to that of
the variable, thereby guaranteeing that security cannot be violated by
the act of invoking a function reference. An alternative definition is
given in 3].

3. Formal Definitions of Relations and Predicates
A multilevel system is defined to be the following ordered 10-
tuple:

<s, sg, L, ™", F, K, I, R, N,, N>

where the elements of the system can be intuitively interpreted as
follows:

S - States: the set of states of the system

1) - Initial state: the initial state of the system; 8o £S

L - Security levels: the set of security levels of the system
" -~ Security relation: a relation on the elements of L that

partially orders the elements of L

F - Visible function references: the set of all the externally
visible functions and operations (i.e., functions and
operations that can be invoked by programs outside the
system); if a function or operation requires arguments, then
each function together with each possible set of arguments is
a separate element of F (note that in this document externally
visible functions and operations will be referred to
collectively as visible functions (or functions) even though
operations are not functions in the mathematical sense)

K - Function reference security level: a function from F to L
giving the security level associated with each visible
function reference; a process may invoke only function
references at the security level of the process; K:F->L

I - Function reference integrity level: a function from F to L
giving the integrity level associated with each visible
function reference; a process may invoke only function
references at the integrity level of the process; I:fF->L
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R - Results: the set of possible values of the visible function
references

Nr'Ns - Interpreter: functions from FXS to R and S that define how a
given visible function reference invoked when the system is in
given state produces a result and a new state; Nr:FXS->R and
NS:FXS->S.

There is also a set of state variables V, each member of which is the
set of values can be assumed by that state variable. The set of states
S is isomorphic to the cross product of all the state variables v<V.

In order to define multilevel security and integrity, the following
definitions are useful:

T - the set of all n-tuples of visible function references or, in
other words, all possible sequences of operations
#
T=F

M - the function whose value is the state resulting from the given
sequence of operations starting at some given state

M:SXT=>S

D =~ the function whose value is the set of state variables whose
values differ in the given states
D:SXS->V"

The two relations and two predicates described above can now be formally
defined:

f1 -—> fz {==)>
(3t4,5,4T)

N (5, M(t,,M(<F1>,M(t4,84))))
Tz NL(f,M(t,,M(t,,84)))

f =
V1 -—> V2 <——>

(;31 ,52<3=D(S1 ,Sa):{V1 b
V2<D(Ns( f,81),Ns( f,SZ))

r— o -

v -5 <==>

(334,8,481D(34,85)={v})
Nr(f,s1) "= Nu(f,s)5)

S5 v e

(3s48)
v4D(s,Ns(f,s))
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Appendix D R

SAMPLE MULTILEVEL SECURITY PROOF

The actual state of the system is described by the "primitive" V- ©

functions, i. e., functions that return the value of a particular state ﬁ'd
N variable of the system. The primitive V-functions are descriptive
artifacts of the specifications and need not be present in an
implementation. The valu= of a primitive V-function may be available to
a user of the system if there is a visible V-function that returns the .
g value of the primitive V-function. The values returned by visible V- N
] functions are functions of the values of only the primitive V-functions. ﬂi‘

i The specification of each visible function has two major parts. e
s The first part is the EXCEPTIONS, a list of boolean valued expressions. e
'fﬁ If any of these expressions evaluates to true for a given invocation of »
: a function, then the function is aborted with no change of state to the
system. The values of these exceptions are results of the function L g
invocation since the occurrence of an exception is reported to the a A
S caller of the aborted function. ]

For a visible V-function, the second part of the function
specification is the DERIVATION, 2n expression whose value is the result S
of the V-function. The value is returned only if all the exceptions of L
the V-function invocation are false. For an 0- or OV-function, the
exceptions are followed by the EFFECTS, assertions that relate the
values of the state variables (primitive V-function references) Sy
subsequent to the invocation of the OV-function to the values of the :
state variables prior to the invocation of that OV-function. Subsequent
values of state variables are denoted in effects by preceding the
primitive V-function references corresponding to those state variables ‘el
by a single quote ('). Prior values are unquoted. .

‘ Note that there is a very strong correlation between the model
| underlying the semantics of SPECIAL and the model of a system used to
- describe the strong multilevel security properties, P2. The state

variables, V, of the security model are references of the primitive V- "
functions of SPECIAL and the function references, F, of the security gk
model are references of the visible functions of SPECIAL. The values of - -9
function references of the security model are the return values and )
exceptions of the visible functions in SPECIAL. We have also added a ]
convention that prescribes that each primitive function reference of a E
3PECIAL specification contain a formal parameter that is the security o
and integrity levels of that function reference. For visible V- o
functions, the security and integrity levels of a function reference are A
implicit arguments enclosed in square brackets (7...]) after the formal y
. parameter list. The properties P2a, P2b, and P2c can, therefore, be '
5 directly applied to specifications written in SPECIAL.
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There are two difficulties that make proof of the consistency of T
the specifications and the properties P2 nontrivial. First, the .
specifications are written in terms of function descriptions, not
function reference descriptions. This means that one must prove that -;‘f
the properties P2 hold for all possible arguments to the functions
described in the specifications. In many cases some sets of arguments
to a particular function must be considered as distinect cases in order -
to make the proof tractable. The appropriate partitioning of cases R
requires careful judgment. Second, in describing the change of state }ﬂ»j
caused by an 0- or OV-function invocation, SPECIAL permits considerable g
freedom in expressing the relation between the new values of the L
primitive V-function references and their prior values. The use of S8
recursive functions and universal and existential quantifiers makes it I
undecidable, in general, to determine if a new value of a primitive V- "
function reference is functionally dependent upon the prior value of e
some other primitive V-function reference. Since functional dependency ...'a
is generally undecidable, we have derived a set of decidable dependency e
rules that are used to determine if the value of some quoted primitive Y
V-function reference (new value of a state variable) is functionally el
dependent upon some unquoted primitive V-function reference (prior value
of a state variable) for the most common of the decidable cases. When L
these rules cannot be definitively applied, a functional dependency is ;ﬁi.;
assumed. These rules are similar to the elimination rules of {(4]. For i
the specifications we have examined, we have had no difficulty in 1
deriving an acceptable set of such rules. The example given later o
illustrates the proof technique and utilizes a particularly simple set L
of these decidable dependency rules. In order to illustrate the proof R
technique, a proof of two representative operations will be presented. ;kii‘
The operations whose security will be demonstrated are SEGMENT_READ and -~
GET_SEGMENT in the module VIRTUAL_MEMORY. These operations may be T
considered representative in style, size, and complexity of operations Rk
in the TACEXEL design, being perhaps a little simpler than most. The o
proof of properties P2a, P2b, and P2¢ require the identification of all T
instances of primitive V-function references within the operation to be ;.f;‘d
proved. Many such instances are enclosed in the macro facilities of S
SPECIAL (namely the DEFINITIONS, EXCEPTIONS_OFf, and EFFECTS_OF) so those '
macro definitions containing primitive V-function references must be
expanded. However, no such expansions are necessary for the sample
operations.

Each function reference must be assigned a security and integrity e
level, collectively called an access level. In order to guarantee that *'}
the levels of function references do not change (a requirement of the 1
multilevel model), one of the arguments to each function reference will
be its access level. By convention, the access level argument will be ;M:-j
the formal parameter in the definition of the function that is named _Q:*E

N J
T

"al"., (Note that this choice of access Level is arbitrary; an incorrect
choice may cause the proof to fail, however it is never possible to make =~
a choice that will cause the proof to succeed for an insecure system.)
The relation "<=" is defined for access lLevels by the definition
"write_allowed" and the relation ">=" is defined for access level by the
definition "read _allowed".
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The next step in the proof process is to generate a set of theorems
whose validity implies properties P2a, P2b, and P2c. These theorems are
derived from the specifications using knowledge of the syntax of SPECIAL
and the decidable dependency rules (which embody the semantics of
SPECIAL). An examination of these theorems serves to illustrate the
theorem-generating step of the proof process. The theorem for the
operation SEGMENT_READ is:

FORALL sn, i, as, al: read_allowed(al, al)

Properties P2a, P2b, and P2c must be proved for each visible function
reference, i.e., the proof must be carried out for all possible set of
arguments, hence the universal quantification of all the arguments in
the theorem. In actuality, six theorems are generated from
SEGMENT_READ, one for each primitive V-function reference, but they are
all identical.

Consider first the exceptions. Recall that the value of an
exception is a result of a visible function, 30 it is necessary to
identify all primitive V-function references (state variables) upon
which the values of the exceptions are dependent and prove that their
levels are less than or equal to level of SEGMENT_READ. All the
primitive V-function references in the exceptions are at level "al" and
the level of SEGMENT READ is also "al", so we must prove that al<=al.
This is the what the theorem above expresses and it is obviously true
from the definition of read_allowed.

Next we must consider the derivation of SEGMENT_READ. The value of
the derivation is also a result of the function, so again we must
identify all the primitive V-functions in the derivation and prove that
their level is less than or equal to the level of SEGMENT_READ. Again
all the primitive V-functions have level "al" and the same true theorem
obtains. Since this operation is a V-functions and there is no change
of state, properties P2b and P2c do not apply. This completes the proof
of SEGMENT_READ.

The proof of SEGMENT_READ is fairly simple because all the
primitive V-functions referenced in SEGMENT _READ are at the same
security level. We did not even consider if an exception or result is
dependent upon a particular primitive V-function reference, we simply
assumed the worse case that if a primitive V-function appeared in an
expression, then the value of the expression was dependent on the value
of that primitive V-function reference. In the next example,
GET_SEGMENT, the proof is not so simple and it is necessary to consider
more carefully whether or not there is a transmission of information
from some primitive V-function reference.

Consider first the first exception of GET_SEGMENT. In this
exception there is a reference to H_AS_EXISTS. Note however, that the
value of the exception is dependent on the value of the reference to
H_AS_EXISTS only if the read_allowed(al, asl) is true. If
read_allowed(al, asl) is false then the exception is false no matter
what the value of the reference to H_AS_EXISTS. This leads to the
following theorem:
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FORALL source_as, asl, source_sn, dest_sn, as, al:
read_allowed(al, asl) => read_allowed(al, ast)

The consequent of the implication is the normal check for the security
levetl of the function being higher than the security level of the state
variable (property P2a). The antecedent of the implication qualifies
the check for those cases where it matters. This theorem is trivially
true. The second exception yields the same theorem for the same reason.

The third exception yields the following theorem in the normal
manner:

FORALL source_as, asl, source_sn, dest_sn, as, al:
read_al lowed(al, al)

which is true from the definition of read_allowed.

Now consider the first effect of GET_SEGMENT. In order to
demonstrate property P2b we must show that the level of the modified
primitive V-function reference to H_AS_ENTRY is greater than that of the
unmodified primitive V-function reference to H_AS_ENTRY. Again we need
consider only the cases in which there is actually transmission of
information, 30 the following theorem results:

FORALL source_as, asl, source_sn, dest_sn, as, al:
FORALL \:
read_al lowed(1l, asl) AND read_allowed(l, al)
z> read _allowed(1l, asl)

which is trivially true.

To show property P2¢c we must prove that the level of all modified
primitive V-function references is greater than the level of the
reference to GET_SEGMENT. There are modified primitive V-function
references to H_AS_ENTRY and H_AS_ENTRY_OWNED. For H _AS_ENTRY we
consider only the relevant cases yielding:

FORALL source_as, asl, source_sn, dest_sn, as, al:
FORALL 1:

read_allowed(1l, as) AND read allowed(l, al)

=> read_allowed(1l, at)

which is trivially true. For H_AS_ENTRY_OWNED the resulting theorem is:
FORALL source_as, asl, source_sn, dest_sn, as, al:
read_atlowed(al, al)
which is true from the definition of read_allowed.

A simple upper bound can be placed on the number of theorems
generated for a given visible function. Using the following
definitions:

nxv = the number of citations of primitive V-functions in the
exceptions
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nqv = the number of citations of quoted primitive V-functions in the
effects
nuv = the number of citations of unquoted primitive V-functions in

the effects or derivation e B
the number of theorems generated will be at most ’

nxv + (nqv + 1) ® nuv + nqv

For the SEGMENT_READ operation this upper bound is 6 and for the 4,4f
GET_SEGMENT operation this upper bound is 8. In these cases the failure :*J
to reach the upper bound is due to the absence of a return value (other e )
than the exceptions) and that some of the theorems happen to be .
identical and have not been replicated. o]

It is important to realize that this particular example is probably
smal ler than the proof of a typical visible function in a system such as
TACEXEL. A more representative example is likely to contain more _
DEFINITIONS, EXCEPTIONS_OF, and EFFECTS_Of expressions that contain Ad
citations of primitive V-functions thereby yielding a much greater '
number of such citations in the expanded form of the function
specification, hence a much greater number of theorems. In fact, the ‘
listing of theorems is undoubtedly going to be much longer than the .
listing of the specifications from which the theorems are derived. The ;
saving grace is that the proofs of the theorems are rather simple and
are amenable to automation.
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Appendix E

PERMISSIBLE PROCESSOR LOADINGS

This appendix examines three scheduling algorithms to determine the
processor loads which can be sustained without risk that any task cannot
be serviced within its time constraints. Subsequent work should
consider the effects of scheduling overheads and extend the analysis to
other workloads and scheduling algorithms.

1. Deadline Scheduling

For this analysis nothing is assumed about the nature of the tasks
to be performed except that:

a) for each task there is a known deadline by which the task must be
completed,

b) the processing of any task may be preempted should it be
appropriate to process another task,

¢) the tasks may be processed at any time between their initiation
and their deadline, and thus tasks may not block each other by
semaphores or other mechanism.

Scheduling overheads are assumed to be zero. The analysis makes no
assumptions about the periodic repetition of tasks, about foreknowledge
of the processing requirements of tasks, or about the possible future
demands of other tasks.

The deadline scheduling algorithm to be analysed selects, from
amongst those tasks available for processing, that task whose deadline
is the earliest. It will be shown that if, for any particular
combination of tasks, the deadline scheduling algorithm is umnable to
schedule tasks so as to complete all of them within their respective
deadlines, then there does not exist any schedule which is able to
compiete them all.

Consider a pattern of tasks such that one task cannot be completed
before its deadline. From this pattern, select a critical subset of
tasks by recursive enumeration, using the rules:

a) the task which cannot be completed within its deadline is a member
of the set,

b) any task, such that at the time at which its processing is
completed some other task of the set awaits service, is a member
of the set.

Note that during the interval from the earliest initiation of a member
of the set to the deadline of the failing task there must always be at
least one member of the set being processed or awaiting processing.

122

o3

o




.........

Thus within this interval there can be no idle time and no processing

performed for any task whose deadline is later than that which was
failed.

Consider this interval. The set of tasks is a set all of whose
processing must be completed within the interval. The whole of the
interval 1is allocated to processing for these tasks, and yet processing
remained at the end of the interval. Thus the total quantity of
processing required during the interval exceeds the length of the
interval, and there can be no arrangement of processing which can
complete it in time.

Thus if, for any particular combination of tasks, the deadline
scheduling algorithm is unable to schedule tasks so as to complete all
of them within their respective deadlines, then there does not exist any
schedule which is able to complete them all within their respective
deadlines The corollary of course is that if there exists any schedule
which can complete all the tasks, then the deadline schedling algorithm
suffices to find such a schedule.

2. Priority Scheduling of Periodic Tasks

For this analysis, it is assumed that the tasks of the system are
activated on a regular periodic basis, and that each task must complete
its processing before the next activation of that task is due. It is
assumed that tasks may be scheduled to be run at any time within this
period, that preemption is permitted, and that the scheduling overhead
is zero.

The priority scheduling algorithm to be aralysed selects, from
amongst those tasks available for processing, that task whose repetition
period is shortest. It will be shown that a particular pattern of task
periods and activations represents a local most difficult case and that
scheduling on the basis of repetition period permits the highest lLoading
for this pattern. It is shown that for this ltocal worst case the
processor may be lLoaded upto 1ln(2) of capacity without risk of any task
failing to complete within its repetition period.

It is believed that the bad patterns of tasks occur when all the
tasks of the system are activated at the same moment in time, and when,
for each task except that with the shortest period, the period of a task
is equal to its own processing time plus the period of the next shorter
period task. An example of such a bad pattern is given in Figure E-1.
Contrary to intuition, the pattern in which all tasks must complete
before the same moment in time, shown in Figure E-2, is not a bad
pattern. Figure E-3 shows that the deadline algorithm described above
can schedule a bad pattern for which the priority algorithm can find no
schedule.

It is believed that the worst case pattern occurs when the
processing times for all tasks are in equal proportion to their periods.
While this proportion tends to zero as the number of tasks in the
pattern tends to infinity, no demonstration is available that this
pattern is a global worst case. It can only be shown that each change
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in the pattern permits a higher processor utilization, indicating that
the pattern is a local worst case.

Consider a pattern similar to that of Figure E-1 with n tasks
processed and task n+1 unprocessed. If the period of the sho;test
period task is a then its processi?g requirement must be a(2'/P-1) while
the period of the next task is a(2 n) The period of each task in the
series 1ncreases in the same proportion until the period of task n+1 is

a(2 /n ‘ = 2a. Tne processor load is
n(z /n

- n(eln(z)/n 1)

n(1 + 1n(2)/n + 1n(2)2/202 + 1(2)373103 « ... -1)

In(2) + 0(1/n)

Thus the permissible load decreases monotically as n increases with a
limit of Ln(2) (70.693). If the worst case pattern of tasks can be
processed using the priority scheduling algorithm, provided that the
processor Load does not exceed 1n(2), then any pattern of tasks can be
processed using the priority scheduling algorithm provided load does not
exceed In(2) (approximately 0.693).

3. Simply Perjodic Scheduling

The bad cases for the priority scheduling of periodic tasks arise
because the arbitrary periods of the periodic tasks allow the relative
phasing of those tasks to change until a bad case is builtup. If the
periods of the tasks are constrained to be simple multiples of sach
other, this effect can be avoided and higher processor utilizations can
be permitted.

We define a simply periodic system to be one in which each period,
other than the shortest, is an integral multiple of the next shorter
period, and initialy all periods start simultaneously. Several tasks
may be run at each of these periodicities. The scheduling algorithm
selects at all times tasks of the shortest period which still require

processing. An example of a simply periodic system is given in Figure
E-U.

Simple inspection shows that provided the load on the system does
not exceed the capacity of the processor, the simply periodic system can
complete all tasks within their periods. This high processor
utilization is, however, to some extent misleading. Because of the
limited set of periodicities at which tasks may be run, some tasks may
be run more frequently than the application really requires. If the
required processor loading is uniform over task period, then conversion
to a simply periodic system is equivalent to restricting the processor
loading to 0.75. If the required processor Loading is negative
exponential over task period, then conversion to a simply period system
is equivalent to restricting the processor lLoading to 0.682. In other
cases, the required periods may be such that very Little increase in
processor Load results from conversion to a simply periodic system
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y, Demonstration of local worst case

Consider the pattern of Figure E-1. To demonstrate a local worst
case, it is necessary to show that a change in the time of activation,
or in the period, or in the processing requir:aent of any task loads to
an increase in processor utilization over the bad case.

If any task of B to F is activated slightly early, time will be
available for processing task G after task F has been processed. If
task A is activated slightly early, time will be available for
processing task G after task A has been processed for the second time.
If task G is activated early, time is available for processing it at
that time. These changes all increase processor utilization and lead
away from the worst case.

If any task of A to F is activated slightly late, time will be
available for processing task G before the second activation of that
task. If task G is activated slightly late, the pattern is unchanged,
while for greater delays in activation of task G, time is available for
processing task G after the third processing of task A. These changes
all increase processor utilization and lead away from the worst case.

If any task of B to F has a slightly shorter period, the pattern of
usage is unchanged and the processor utilization is increased. If task
A has a slightly shorter period, the processing of task F is split, and
the processor utilization is increased. Thus these changes lead away
from the worst case.

If any task has a slightly longer period, then time is available
for the processing of task G immediately prior to the activation of that
task for the second time. It is necessary to show tha:t the increased
processor utilization from processing task G is greater than the
decreased processor utilisation from the longer period. Lengthening the
period of task A yields the greatest reduction in processor utilisation.
If the period of task A is increased by s and task G processes for s the
change in processor utilization is

-q/nq + q/(nq + d) + d/2nq

= ((n-2)dq + d2)/(2nq(nq + d))
which is positive, indicating an increase in processor utilization and a
move away from the worst case.

Changes in task processing time require more care since a move
towards shorter processing time and more tasks is a more towards the
worst case. It is appropriate to show that a move away from processing
times proportioned to task period is a move away from the worst case.
Consider two tasks of period a and a+q. If the processing requirement
of the short period task is reduced by d, then the period of the longer
period task is reduced by d and its processing is increased by d. The
change in processor utilization is

-q/a + (q-d)/a - q(q+a)/(a(q+a)) + (q + a)q/a

= d2/(a(qea-d))
Since this is a term in d2 any change in the processing requirement of 2a
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task, whether an increase or decrease, increases processor utilisation
and is a move away from the worst case.

To show that a schedule based on task repetition periods is the
best fixed priority schedule, consider interchange of priorities for two
tasks. For any two tasks of A to F, the execution pattern changes but
there is still no time in which to process task G. If task G's priority
is interchanged with any task A to E that task will fail to complete its
processing within its first iteration. Since G processes for longer
than the task whose priority it has taken task F will also fail to
complete. If tasks F and G are interchanged in priority, G will
complete while F fails, and processor utilisation is reduced.
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task A A A 1A A A A '

task B I - B iB iB iB ]
task C i C iC ic i1 C iC
task D i D iD i D iD i
task E i E iE iE | B
task F i F \F I\F IF
task G | i ! i

ABCDEFABCDEFA B C ADEBF AC DB AECF B

time ---> ! delimits time periods
for each task iteration

Figure E-1. A Bad Pattern of Tasks for Priority Scheduling

Note that, though the processor is not yet fully loaded, there is no
time available for processing task G within its first iteration. For
this task pattern the maximum safe processor load is about 0.736. As

the number of tasks in the pattern increases, the maximum safe processor
load diminishes to about O, 693.
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task A 1A A A A A A
: task B !B /B iB {B B |
,'q task C ic it ¢ o ic ]
: task D | D D 0 ST !
é! task E s 1B H d
h task F 'F F F !
- task G| G ' G ' G |

ABDFCGAEBD ACFBEGADC B AFEDCBAG

time ---> { delimits time periods
for each task iteration

DI R

Figure E-2. Many tasks completed at the same time

Contrary to intuition this pattern presents no scheduling problems (yet;
it is of course followed immediately by the pattern of Figure E-1).
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;;
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ABCDEFGABCDEAFBGC ADEBF ACGDB AECF B

time ---=> | delimits time periods
for each task iteration

Figure 3. Tasks from Figure E-1, using the
Deadline Scheduling Algorithm

The deadline algorithm has no difficulty in running task G and could

even

find time to run further tasks, in a circumstance in which the

priority algorithm could not run task G.

Note that, provided each set of tasks operate on a period which is an
integral multiple of the next shorter period, high processor utilisation

IAB |AB {AB !AB }AB !AB !AB A
| ccD--D | CCD--D | CCD--D | CCD=-
: EE-=======EF=======<F|

time ---=> | delimits time period
for each task iteratiion

Figure E-4., A sample pattern of tasks for
a simply periodic system

can be achieved safely. If any pair of periods do not have a simple
integral relationship, this high utilization cannot be permitted.
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Appendix F
THE SPECIAL SPECIFICATION LANGUAGE
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Appendix F

THE SPECIAL SPECIFICATION LANGUAGE

SPECIAL is a specification language used for specifying the
functional behavior of modules (Stage 4) and for describing
representations (Stage 5).

The language originated in the work of Parnas (7], but has evolved
significantly since. SPECIAL lacks some of the mathematical elegance of
the algebraic specification technique [15], but is a more powerful
language capable of expressing some specifications that cannot be
expressed at all by any other specification language. If the full power
of SPECIAL is used, there is no hope of showing that a specification is
complete and consistent,and satisfies a requirement statement, e.g. the
multi-level security model. Indeed it is a feature of SPECIAL that
nondeterministic systems can be specified. However few specifications
need the full power of SPECIAL, and it i3 possible to write
specifications within the kind of restricted domain that allows
straight-forward derivation of the properties of the specification.

1. Description of the lLanzuage

The heart of a specification written in SPECIAL is the definition
of the operations on the type. The operations are of three kinds:

# O-functions (OFUN),
®  OV-functions (OVFUN),
® V-functions (VFUN).

In the absence of exceptional conditions:

®# a V-function invocation (as an operation) returns a value,
but causes no state change,

an O-function invocation can cause a state change, but
returns no value an OV-function invocation returns a value
and can cause a state change
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A V-function is denoted as visible if it is an operation of the type and
as hidden if it is internal to the specification. A V-function may also
be derived, meaning that its value is expressed as a function of the
values of other V-functions. The "state" of the type can be thought of
informally as the Cartesian product of the values of all of the V-
functions other than the derived functions. Good practice in the use of
SPECIAL requires that all the visible V-functions be derived, so that
the state functions are all hidden.

In addition, the specification defines:

®  jinitial values for each nonderived V-function. The
specification is required to define initial values for the
full domain of the V-function.

*  exception conditions for each of the visible V-functions,
O-functions, and OV-functions.

* the returned value for each derived V-function and OV-
function.

®  the values that the nonderived V-functions will acquire
after an invocation of each O-and OV-function.

®  assertions about relationships between the values of the
parameters.

SPECTAL allows user-defined local functions. The definition of the
function gives a type to the function and to each of its formal
arguments, and provides a body. Any such function can be used as a sub-
expression in an expression with appropriate actual arguments
substituted for the formal arguments, provided the type of the actual
arguments is consistent with the function definition, and the declared
type of the function is consistent with its use in the expression. For
example, we can define the Boolean function no-string using the
following syntax

BOOLEAN no-string( INTEGER j) IS
J<10R J> t_len(),

where the body follows the reserved word IS, and t_len() is a V-function
of the module. One can use no-string(i) where a Boolean-value is

expected within a scope where i1 has been declared as an integer.
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Designators

A designator is the name of an object or an instance of the Lype
being defined. Designators are not manipulatable, except for being

returned as the result of a function or being used as an arguaent to a
function.

Sets

In specifying a concept it is often useful to view objects as if
they formed a set. The advantage of the set viewpoint is the absence of
any consideration of ordering or repeated elements. The use of sets in
a specification often leads to simpler specifications and averts

prejudicing a specification with implementation decisions. All elements
of a set are of the same type.

If s has been declared to be of type
SET_OF INTEGER

then 3 can be defined to be a particular integer set. The extensional
constructor explicitly identifies the individual elements. The
following forms are equivalent:

{1, 3, 5, 7}
SET(1, 3, 5, 7)

-]
s

The intentional constructor can also be used:
s = {INTEGER i | o < 1 AND f < 9 ANDi MOD 2 = 1 }

The general form for a integer set is
{INTEGER i | p(1) }

where p(1) is a Boolean expression. The intentional form is used more
often, since it permits the concise characterization of large sets.

The set of consecutive integers between Lwo given integers can be
specified using the following shorthand:
ss = {7 .. 36}

A predefined function for sets, is CARDINALITY, which returns an
integer, the number of elements in a set. Thus,
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CARDINALITY(s)

would now be X.

Another predefined function for sets is INSET, which determines
that an element is in a set, returning a result of type BOOLEAN. Thus,
1 INSET s

is TRUE.
Vegtors

For vectors, similar constructors are provided. If iv has been
declared to be of type
VECTOR_OF INTEGER

then the extensional constructor would be used, as:
iv = VECTOR (1, 3, 5, 7)

The intentional constructor for the same vector is
iv = VECTOR(FOR L FROM 1 to U4: 2®%1 - 1),

The predefined function LENGTH returns the number of elements in a
vector. Thus
LENGTH(1iv)

returns the integer 4.

structures

This form is used to specify an ordered assemblage of objects, not
necessarily of the same type. The elements of a structure are each
identified by 2 unique name. The structured type employee, each value
of which contains 3 elements, could be declared as follows

employee: STRUCT_OF(INTEGER id, age; VECTOR_OF CHAR title)

A particular instance, Williams, of the type employee can be expressed

as
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Williams = STRUCT(15024, 22, Sr_Adm_Aide).

Particular components can be referred to by using the component name as
an extractor

Williams.age

has value 22.
Undefined Values

It is often useful in a specification to indicate that a particular
object has no value. We use the particular symbol ? (shorthand for
UNDEFINED) to represent no value. Often, the initial values of

primitive V-functions are most conveniently specified to be ?, rather

than some random value. In SPECIAL, ? is a member of all types unless
explicitly excluded. Thus the type INTEGER consists of the values
{ ... ,=2,=-1,0,72,1 ...1

The rules of the grammar are satisfied when a V-function is declared to
be of type INTEGER, and the specification indicates that the initial
value for certain of its associated V-functions is ?.

Function Definitions

A hidden V-function definition has the form:

VFUN v(typespecl argl; ... ) => typespec result;
HIDDEN;
INITIALLY
expr;

The expression following INITIALLY is an expression that characterizes

T TvYY

the initial value(s) for each possible argument. Generally, "expr" is

of the form

oy

result = expression

possibly being

result = ?,

as shorthand for: result is ? in the initial stakte for all possible
argunents to v.
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A visible V-function has the form:

VFUN v(typespect arg2; ... ) => typespec result;
EXCEPTIONS
ex1;
ex2;

INITIALLY
expr;

Each of thne exception conditions is of the form

exceptionname: expression,

where "exceptionname" is namz assigned to the exception condition, and
expression is a Boolean expression of the arguments, V-functions, and
parameters. The exceptionname enables a program using the operations of
the type to discriminate between the possible exceptions. Generally,
but not always, an abstract program invoking a visible function will
test for the existence of the exceptions in the order they appear in the
specification. Thus, if the expressions associated with 41, ... di-1
evaluate to FALSE for the arguments of the function invocation, and the
expression associated with di evaluates to TRUE, then di will be
"raised"; subsequent exception conditions are not tested. If "v" has no

exception conditions then the "exceptions section" is omitted.

A derived V-function has the form:

VFUN v(typespecl argl; ... ) =-> typespec result
EXCEPTIONS

DERIVATION
expr;

where the expression following DERIVATION defines the result in terms of
the arguments, primitive V-functions, and parameters. The :type of the
expression should be the type of the function.

An OV-function has the form:
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OVFUN ov(typespecl argl; ... ) => typespec result;

EXCEPTIONS L
. : L
EFFECTS .
ef1; .
ef2;
efq; 'A

Each of the effects efl ... efq is an assertion that relates the value
of the result and/or the new (after the invocation) value of primitive b
V-function positions, to the values of the arguments, the prior (before -..,.J
the invocation) values of V-functions, and the parameters. The notation '
'v(x) is used to denote the new value of a V-function. In the EFFECTS

PENT RN EY

section, the results and the new values for V-functions are defined by R
the conjunction of all of the effects assertions. They appear as ‘ﬁ.j
separate expressions only for ease of presentation. There is no concept 'f
of order implied here since we could have equivalently stated the .;gi
EFFECTS as the single expression S

ef1 AND ... AND efq. -g

As indicated previously, these effects occur only when an operation does

not cause any of the exception predicates to be satisfied.

The schema for an O-function is identical to that of an OV- =-.'

function, except that no returned result is indicated. _:;i

With this brief introduction to SPECIAL the reader should be able .»-i

to follow the example specification. ;d~;

P N
a. An Example of a Specification in SPECIAL 1

The module "sequences" defines a collection of word files i'~:

P (sequences), each of which is identified by a unique designator of type ; .j
- nameseg. A user of the module can request the creation of a new .o
' sequence; an existing sequence can be cleared to its initial state, but o
never be deleted, so that there is no recycling of nameseg designators. : ;f

¢ oy
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For reading, the words of a sequence are randomly accessed by position.

A sequence is grown by appending words to the end. Two words of a
sequence can be interchanged. The operations defined are:

® nameseg; a designator type, the values of which are names
of sequences.

® string ( nameseg n; INTEGER j) -> word w; a visible V-
function that returns the word w at position j in the
designated sequence n; word is a named type that is
precisely defined later. As the only V-function, string
captures the "state"™ of each sequence in the system.

®#  seqlen( nameseg n) -> INTEGER v; a derived visible V-
function that returns the current length of sequence n.
The value of seqlen(n) can be derived from the value of
string( n, j).

®* create_seq() -> nameseg n; an OV-function that creates a
new sequence, initializes it, and assigns a designator to
it.

% clear_seq( namesez n); an O-function that clears a
designated sequence.

%  append( nameseg n; word w); an O-function that adds the
word w to the end of the sequence.

*  swap_seq( nameseg n; INTEGER i, j); an O-function that
causes the words in positions i and j to be exchanged.

The specification of sequences contains three paragraphs. The

FUNCTIONS paragraph contains the details of the specification for each
function. The DEFINITIONS paragraph contains the definitions of local
functions. The TYPES paragraph declares types that are to be referred
to in the specification.

The TYPES paragraph must contain the declaration of the
designator type introduced in this module. Thus we declare nameseg as
the type whose values are the string sequences of interest. Other
types, e.g. subtypes or aggregate types, can be declared here. In the
sequences specification we declare the aggregate subtype "word". Note
that the definition of a word.

the set of all character vectors whose length is positive,

underscores the notion of a type as a set of values. No upper limit on
the length of a word is imposed here. In the specification of the
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individual functions, we will confront the (inevitable) problem of
handling physical storage lLimitations.

The next module paragraph is the DEFINITIONS paragraph. A
function definition is an expression, of declared type, in terms of the
V-functions, parameters, or other defined functions of the module. A
definition can have arguments or not as required. Thus, the general
form of a definition is

typespec defname(typespec! argl, ... ) IS body
Now let us consider the function specifications in turn.

Stringstate

Stringstate is a hidden V-function that returns the word w at
position j in the designated sequence n. As the only non-derived V-
function, stringstate captures the "state" of each sequence in the
system.

The expression in the INITIALLY section,

w=27?

is shorthand for
initially, for all sequences the value of all positions is ?.

String

String is the visible derived V-function that returns the word
w at position j in the designated sequence n. Its derivation is merely
the hidden V-function stringstate.

A single exception corresponds to no word being present at
L‘ position j. The reader might question the absence of any exception

' condition corresponding to the formal argument n. What if a user

o invokes string(nn, j) with some designator nn that is not an existing
;; nameseg, possibly being of a different type? It would be necessary to
e define such an exception only in a context where such a circumstance is
' expected and must be guarded against. For many types, intended for use
in a strictly typed context, such checks would be regarded as
unnecessary.
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Seglen

Seqlen is a derived visible V-function that returns the
current length of sequence n. The derivation (returned value) is
expressed as

consider an integer set that contains all of the
integer positions that store a word whose value is
not ?; the returned value is the cardinality of this
set.

It is emphasized that this is a specification for determining the number
of words in a sequence. It is not an implementation, which would likely

be carried out using a memory cell to hold the current sequence length.

Create Seq

Create_seq is an OV-function that creates a new sequence,
initializes it, and assigns a designator to it. To express, as an
effect, the generation of a never previously generated nameseg
designator we use the notation

NEW(nameseg) .

NEW is a predefined function in SPECIAL, that requires an argument of
type DESIGNATOR.

returns "v,

As part of the underlying semantics of NEW, it never

One final note about the specification of create_seq concerns
the apparent absence of any effect to express the initialization of a
newly created sequence. Such an expression is not needed here since the
initial value of stringstate(n, j) is ?, which is precisely what is
desired of a sequence after it is created. Thus, the act of creating a
sequence is to make a nameseg designator n available so that words can

be appended to n, swapped and subsequently read out.

Clear seq

Clear_seq 1s an O-function that clears a designated sequence.
We express this effect by indicating that the value in all positions of
the sequence is to be ?. This specification illustrates how a desirable

concise specification can appear to be an over-specification; positions
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that were previously ? are re-specified to be ?. An equivalent, but

less desirable specification is
FORALL INTEGER j INSET {1...seqlen(n)}: 'stringstate(n, j) = ?

indicating that all positions in the sequence that previously stored
defined words, will have value ? after the invocation. The reader
should note that in a specification conciseness is desirable, as
contrasted with an implementation where efficiency is generally vital.

Append

Append is an O-function that adds the word w to the end of the
sequence. As the effect indicates, after an invocation word w will be
at position

seqlen(n) + 1

which is the newly-created end-position of the sequence. This
specification illustrates the purposeful omission in the EFFECTS section
of V-function positions whose values one left unchanged. The following
expressions are implicit:

FORALL INTEGER j ~= seqlen(n) + 1:
‘stringstate(n, j) = stringstate(n, j);

FORALL INTEGER j; nameseg ni1 ~= n:
'stringstate(nl, j) = stringstate(n, j)

The first expression indicates that all positions of n except seqlen(n)
+ 1 are left unchanged, and the second that all positions of all other

sequences are left unchanged.

Swap seq

Swap_seq is an O-function that causes the words in positions i
and j to be exchanged. Based on the above discussion the specification
should be self-explanatory. Note that no order of operation is implied

in the EFFECTS section. After an invocation of swap_seq both
expressions will be TRUE. There is no intermediate state.




The Specification of the Module sequences

MODULE sequences
$( maintains an unspecified number of variable length
sequences of character strings (words) , each string of
variable length. For reading, words can be randomly
accessed. New words can be inserted at the end of a
sequence. Words can be exchanged)

TYPES
nameseq: DESIGNATOR; $( names of sequences)
word: { VECTOR_OF CHAR vc | LENGTH(ve) > 0 };
DEFINITIONS
BOOLEAN no_word{nameseq n; INTEGER j)
IS NOT jJ INSET { 1 .. seqlen(n) };
FUNCTIONS
VFUN stringstate(nameseq n; INTEGER j) -> word w;
o HIDDEN;

INITIALLY
w = 7

VFUN string(nameseq n; INTEGER j) -> word w;
$( returns the j-th string in sequence n)

EXCEPTIONS
noword : no_word{(n, j);
- DERIVATION
- w = stringstate(n,j);
Li VFUN seqlen(nameseq n) -> INTEGER v;
$( returns the number of strings in sequence n)
: DERIVATION

CARDINALITY({ INTEGER j | stringstate(n, j) ~= ? });

OVFUN create_seq() -> nameseq n;
$( creates a new sequence all words of which are

1 undefined. A newly generated designator is returned)
. EXCEPTIONS
: RESOURCE_ERROR ;
EFFECTS
n = NEW(nameseq);
4
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OFUN clear_seq(nameseq n); $( clears sequence n)
EFFECTS
FORALL INTEGER j: ‘'stringstate(n, j) = ?;

OFUN append(nameseq n; word w);
$( appends word w to the end of the sequence n)
EXCEPTIONS
RESOURCE_ERROR ;
EFFECTS
‘stringstate(n, seqlen(n) + 1) = w;

OFUN swap_seq(nameseq n; INTEGER i, j);

$( exchanges words in positions i and j of sequence n)

EXCEPTIONS
no_wordl : no_word(n, 1);
no_word2 : ao_word(n, j);

EFFECTS
'stringstate(n, i)
'stringstate(n, j)

stringstate(n, j);
stringstate(n, 1);

END_MODULE
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